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Summary of Module 1: Deterministic 
Shared-Memory Parallelism

• Serializable subset of HJ
— { async, finish, future, forasync }
—Erasure property: any HJ program written using the above constructs 

can be converted to an equivalent sequential program by “erasing” all 
parallel constructs i.e., by removing async & finish, and replacing 
future & forasync by equivalent sequential constructs

• Deadlock-free subset of HJ
— { next, barriers, phasers, forall, async phased } + Serializable subset
—Deadlock-freedom property: any HJ program written using the above 

constructs is guaranteed to never deadlock

• Deterministic subset of HJ
— { data driven futures, async await } + Deadlock-free subset
—Data-race-free determinism property: if any HJ program written using 

the above constructs is guaranteed to be data-race-free for a given 
input, then it must also be deterministic and structurally deterministic 
for that input i.e., all executions with the same input must generate the 
same output AND the same computation graph 
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Outline of Today’s Lecture
Start of Module 2: Nondeterministic Shared-Memory 
Parallelism and Concurrency

• Critical Sections and the Isolated Statement

• Atomic Variables
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Formal Definition of Data Races (Recap)
	 Formally, a data race occurs on location L in a program execution 

with computation graph CG if there exist steps (nodes) S1 and S2 
in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is 

no path of dependence edges from S1 to S2 or from S2 to S1 in CG, 
and

2. Both S1 and S2 read or write L, and at least one of the accesses is a 
write.

	 However, there are many cases in practice when two tasks may 
legitimately need to perform conflicting accesses to shared 
locations without incurring data races

—Special cases with determinism guarantees: finish accumulators, 
phaser accumulators

—How should conflicting accesses be handled in general, when 
outcome may be nondeterministic?
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Example of two tasks performing conflicting 
accesses --- need for “mutual exclusion”

1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     { // start of desired mutual exclusion region

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } // end of desired mutual exclusion region

9.     . . . // other code in delete() that does not need mutual exclusion

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete(); // conflicts with previous async
19.  }
20. }
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How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed 

many years ago is to enclose the code region in a critical section. 
—“In concurrent programming a critical section is a piece of 

code that accesses a shared resource (data structure or 
device) that must not be concurrently accessed by more than 
one thread of execution. A critical section will usually 
terminate in fixed time, and a thread, task or process will have 
to wait a fixed time to enter it (aka bounded waiting). Some 
synchronization mechanism is required at the entry and exit of 
the critical section to ensure exclusive use, for example a 
semaphore.”

— Source: http://en.wikipedia.org/wiki/Critical_section
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HJ isolated statement 
isolated <body>
• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in 
mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of statement 

instances, not to (isolated, non-isolated) pairs of statement instances

• Isolated statements may be nested
— An inner isolated statement is redundant

• Parallel constructs should be avoided inside isolated statements
—Isolated statements must not contain any other parallel statement that 

performs a blocking operation: finish, future get, next, async await

—Non-blocking async operations are permitted, but isolation guarantee 
only applies to creation of async, not to its execution

• Isolated statements can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks) can lead 

to a deadlock, if used incorrectly
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Use of isolated to fix previous example 
with conflicting accesses

1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     isolated { // start of desired mutual exclusion region

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } // end of desired mutual exclusion region

9.     . . . // other code in delete() that does not need mutual exclusion

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete(); // conflicts with previous async
19.  }
20. }
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Let's try another isolated example in Worksheet 19!
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Parallel Spanning Tree Algorithm using 
isolated statement

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated if (parent == null) parent=n;

6.     return parent == n; // return true for success
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .
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Figure source: 
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning 
tree edge shown 
as arrow from 
child to parent)
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Serialized Computation Graph for 
Isolated Statements

• Model each instance of an isolated statement as a distinct step 
(node) in the CG. 

• Need to reason about the order in which interfering isolated 
statements are executed
—Complicated because the order of isolated statements may vary from 

execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a 
specific ordering of all interfering isolated statements. 
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge 

from S to S′ for each prior “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on 

intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

—An SCG represents a set of executions in which all interfering isolated 
statements execute in the same order.
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Example of Serialized Computation Graph 
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10:  isolated { x ++; y = 10; } 
v11:  isolated { x++;  y = 11; } 
v16:  isolated { x++;  y = 16; } 
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 Data race definition can be applied to Serialized 
Computation Graphs (SCGs) just like regular CGs	

—     Need to consider all possible orderings of interfering isolated 
statements to establish data race freedom
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Object-based isolation in HJ 

isolated(obj1, obj2, ...) <body>

• In this case, programmer specifies list of objects for 
which isolation is required

• Mutual exclusion is only guaranteed for instances of 
isolated statements that have a non-empty intersection 
in their object lists 
—Standard isolated is equivalent to “isolated(*)” by 

default i.e., isolation across all objects
• Implementation can choose to distinguish between 

read/write accesses for further parallelism
—Current HJ implementation supports object-based 

isolation, but does not exploit read/write distinction
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DoublyLinkedListNode Example 
revisited with Object-Based Isolation
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1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     isolated(this.prev, this, this.next) { // object-based isolation

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } 

9.     . . .

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete();
19.  }
20. }
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Outline of Today’s Lecture
Start of Module 2: Nondeterministic Shared-Memory 
Parallelism and Concurrency

• Critical Sections and the Isolated Statement

• Atomic Variables
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Atomic Accesses in Java

• An atomic action happens all at once
• Subcomponents of one atomic action cannot be 

interleaved with subcomponents of another 
atomic action

• Reads and write for reference variables and 
primitives (except long and double) are atomic

• Basic safety guarantee: a read always returns a value 
written by some task, some time in the past 

• No “out-of-thin-air” values for references and 
primitives (except for long and double)
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Why reads and writes on long/double 
values may be non-atomic 

1. long x; // upper = lower = 0

2. async { x = 1L << 32 + 1L; } // lower=1; upper=1;

3. async { x = 2L << 32 + 2L; } // lower=2; upper=2;

4. async { System.out.println(x); }

5. // Possible output value includes

6. // 1L << 32 + 2L (lower=2, upper=1)

16

upper lower

64 bits

32 bits 32 bits
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java.util.concurrent library

• Atomic variables
—Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections: 
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
—Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can 
safely be used in HJ programs

—Atomic variables are part of the safe subset
—We will study the full library later this semester as part of Java Concurrency
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java.util.concurrent.atomic.AtomicInteger
• Constructors

— new AtomicInteger()
– Creates a new AtomicInteger with initial value 0

— new AtomicInteger(int initialValue)
– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta) 
– Atomically adds delta to the current value of the atomic 

variable, and returns the new value
— int getAndAdd(int delta)
– Atomically returns the current value of the atomic 

variable, and adds delta to the current value

• Similar interfaces available for LongInteger
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Work-Sharing Pattern using AtomicInteger
1.  import java.util.concurrent.atomic.AtomicInteger;

2.  . . .

3.  String[] X = ... ; int numTasks = ...;

4.  AtomicInteger a = new AtomicInteger();

5.  . . .

6.  finish for (int i=0; i<numTasks; i++ ) 

7.    async {

8.      do {

9.         int j = a.getAndAdd(1); 

10.        // can also use a.getAndIncrement()

11.        if (j >= X.length) break;

12.        . . . // Process X[j]

13.      } while (true);

14.    } // finish-for-async
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Atomicity in standard vs. atomic variables

• Reads and write for reference variables and primitives 
(except long and double) are atomic

• Basic safety guarantee: a read always returns a value 
written by some task, some time in the past 

• No “out-of-thin-air” values for references and primitives 
(except for long and double)

• Atomic variables support compound atomic operations 
that go beyond single read/write accesses

• Operations on atomic variables can be safely invoked 
by parallel tasks, but (like isolated statements) they may 
increase the critical path length of your parallel program

• Not a problem if the remaining parallel (non-atomic) 
work is large
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java.util.concurrent.AtomicInteger methods and their 
equivalent isolated statements

21

Methods in java.util.concurrent.AtomicInteger class and their 
equivalent HJ isolated statements.  Variable v refers to an 
AtomicInteger object in column 2 and to a standard non-atomic Java 
object in column 3.  val refers to a field of type int.
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java.util.concurrent. AtomicReference methods and 
their equivalent isolated statements

22

Methods in java.util.concurrent.AtomicReference class and their 
equivalent HJ isolated statements.  Variable v refers to an 
AtomicReference object in column 2 and to a standard non-atomic 
Java object in column 3.  ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.
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Parallel Spanning Tree Algorithm using 
AtomicReference

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree
4.   boolean tryLabeling(V n) {
5.     return parent.compareAndSet(null, n);
6.   } // tryLabeling
7.   void compute() {
8.     for (int i=0; i<neighbors.length; i++) { 
9.       V child = neighbors[i];  
10.      if (child.tryLabeling(this))
11.          async child.compute(); //escaping async
12.     } 
13.  } // compute
14.} // class V
15.. . .
16.root.parent = root; // Use self-cycle to identify root
17.finish root.compute();
18.. . .
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Three cases of contention among 
isolated statements

1. Low contention: when isolated statements are executed 
infrequently

— Use of global isolated statements is usually the best approach. No 
visible benefit from other techniques because they incur overhead 
that is not needed since contention is low.

2. Moderate contention (no variable is a “hot spot”): when 
serialization of all isolated statements limits performance, but 
serializing only interfering isolated statements results in good 
scalability

— Atomic variables and object-based isolation usually do well in this 
scenario since the benefit obtained from reduced serialization 
outweighs any extra overhead incurred.

3. High contention (one or more variables are hot spots): when 
interfering isolated statements dominate the program execution 
time

— Best approach in such cases is to find an alternative approach to 
isolated e.g., use of finish/phaser accumulators
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Worksheet #19: 
Insertion of isolated for correctness

class IsolatedPRNG {
  private int seed; 
  public int nextSeed() {
    int retVal;

    retVal = seed;

    seed = nextInt(retVal);

    return retVal;
  } // nextSeed()
  . . .  
} // IsolatedPRNG
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Name 1: ___________________          Name 2: ___________________

The goal of IsolatedPRNG is to implement a single Pseudo Random 
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method 
nextSeed() to avoid data races and guarantee proper semantics.

main() { // Pseudocode
  // Initial seed = 1
  IsolatedPRNG r = new IsolatedPRNG(1); 
  async { print r.nextSeed(); ... }
  async { print r.nextSeed(); ... }
} // main()


