
COMP 322: Fundamentals of
Parallel Programming

Lecture 19: Critical Sections and
the Isolated Statement

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 19 4 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Summary of Module 1: Deterministic
Shared-Memory Parallelism

• Serializable subset of HJ
— { async, finish, future, forasync }
—Erasure property: any HJ program written using the above constructs

can be converted to an equivalent sequential program by “erasing” all
parallel constructs i.e., by removing async & finish, and replacing
future & forasync by equivalent sequential constructs

• Deadlock-free subset of HJ
— { next, barriers, phasers, forall, async phased } + Serializable subset
—Deadlock-freedom property: any HJ program written using the above

constructs is guaranteed to never deadlock

• Deterministic subset of HJ
— { data driven futures, async await } + Deadlock-free subset
—Data-race-free determinism property: if any HJ program written using

the above constructs is guaranteed to be data-race-free for a given
input, then it must also be deterministic and structurally deterministic
for that input i.e., all executions with the same input must generate the
same output AND the same computation graph

2

COMP 322, Spring 2013 (V. Sarkar)

Outline of Today’s Lecture
Start of Module 2: Nondeterministic Shared-Memory
Parallelism and Concurrency

• Critical Sections and the Isolated Statement

• Atomic Variables

3

COMP 322, Spring 2013 (V. Sarkar)4

Formal Definition of Data Races (Recap)
	 Formally, a data race occurs on location L in a program execution

with computation graph CG if there exist steps (nodes) S1 and S2
in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is

no path of dependence edges from S1 to S2 or from S2 to S1 in CG,
and

2. Both S1 and S2 read or write L, and at least one of the accesses is a
write.

	 However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared
locations without incurring data races

—Special cases with determinism guarantees: finish accumulators,
phaser accumulators

—How should conflicting accesses be handled in general, when
outcome may be nondeterministic?

COMP 322, Spring 2013 (V. Sarkar)

Example of two tasks performing conflicting
accesses --- need for “mutual exclusion”

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. { // start of desired mutual exclusion region

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of desired mutual exclusion region

9. . . . // other code in delete() that does not need mutual exclusion

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete(); // conflicts with previous async
19. }
20. }

5

COMP 322, Spring 2013 (V. Sarkar)

How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed

many years ago is to enclose the code region in a critical section.
—“In concurrent programming a critical section is a piece of

code that accesses a shared resource (data structure or
device) that must not be concurrently accessed by more than
one thread of execution. A critical section will usually
terminate in fixed time, and a thread, task or process will have
to wait a fixed time to enter it (aka bounded waiting). Some
synchronization mechanism is required at the entry and exit of
the critical section to ensure exclusive use, for example a
semaphore.”

— Source: http://en.wikipedia.org/wiki/Critical_section

6

COMP 322, Spring 2013 (V. Sarkar)

HJ isolated statement
isolated <body>
• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in
mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of statement

instances, not to (isolated, non-isolated) pairs of statement instances

• Isolated statements may be nested
— An inner isolated statement is redundant

• Parallel constructs should be avoided inside isolated statements
—Isolated statements must not contain any other parallel statement that

performs a blocking operation: finish, future get, next, async await

—Non-blocking async operations are permitted, but isolation guarantee
only applies to creation of async, not to its execution

• Isolated statements can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks) can lead

to a deadlock, if used incorrectly

7

COMP 322, Spring 2013 (V. Sarkar)

Use of isolated to fix previous example
with conflicting accesses

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. isolated { // start of desired mutual exclusion region

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of desired mutual exclusion region

9. . . . // other code in delete() that does not need mutual exclusion

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete(); // conflicts with previous async
19. }
20. }

8

Let's try another isolated example in Worksheet 19!

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n; // return true for success
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

9

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure source:
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning
tree edge shown
as arrow from
child to parent)

COMP 322, Spring 2013 (V. Sarkar)

Serialized Computation Graph for
Isolated Statements

• Model each instance of an isolated statement as a distinct step
(node) in the CG.

• Need to reason about the order in which interfering isolated
statements are executed
—Complicated because the order of isolated statements may vary from

execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge

from S to S′ for each prior “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on

intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

—An SCG represents a set of executions in which all interfering isolated
statements execute in the same order.

10

COMP 322, Spring 2013 (V. Sarkar)

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

11

 Data race definition can be applied to Serialized
Computation Graphs (SCGs) just like regular CGs	

— Need to consider all possible orderings of interfering isolated
statements to establish data race freedom

COMP 322, Spring 2013 (V. Sarkar)

Object-based isolation in HJ

isolated(obj1, obj2, ...) <body>

• In this case, programmer specifies list of objects for
which isolation is required

• Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty intersection
in their object lists
—Standard isolated is equivalent to “isolated(*)” by

default i.e., isolation across all objects
• Implementation can choose to distinguish between

read/write accesses for further parallelism
—Current HJ implementation supports object-based

isolation, but does not exploit read/write distinction

12

COMP 322, Spring 2013 (V. Sarkar)

DoublyLinkedListNode Example
revisited with Object-Based Isolation

13

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. isolated(this.prev, this, this.next) { // object-based isolation

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. }

9. . . .

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete();
19. }
20. }

COMP 322, Spring 2013 (V. Sarkar)

Outline of Today’s Lecture
Start of Module 2: Nondeterministic Shared-Memory
Parallelism and Concurrency

• Critical Sections and the Isolated Statement

• Atomic Variables

14

COMP 322, Spring 2012 (V.Sarkar)

Atomic Accesses in Java

• An atomic action happens all at once
• Subcomponents of one atomic action cannot be

interleaved with subcomponents of another
atomic action

• Reads and write for reference variables and
primitives (except long and double) are atomic

• Basic safety guarantee: a read always returns a value
written by some task, some time in the past

• No “out-of-thin-air” values for references and
primitives (except for long and double)

15

COMP 322, Spring 2013 (V. Sarkar)

Why reads and writes on long/double
values may be non-atomic

1. long x; // upper = lower = 0

2. async { x = 1L << 32 + 1L; } // lower=1; upper=1;

3. async { x = 2L << 32 + 2L; } // lower=2; upper=2;

4. async { System.out.println(x); }

5. // Possible output value includes

6. // 1L << 32 + 2L (lower=2, upper=1)

16

upper lower

64 bits

32 bits 32 bits

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent library

• Atomic variables
—Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
—Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can
safely be used in HJ programs

—Atomic variables are part of the safe subset
—We will study the full library later this semester as part of Java Concurrency

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.atomic.AtomicInteger
• Constructors

— new AtomicInteger()
– Creates a new AtomicInteger with initial value 0

— new AtomicInteger(int initialValue)
– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta)
– Atomically adds delta to the current value of the atomic

variable, and returns the new value
— int getAndAdd(int delta)
– Atomically returns the current value of the atomic

variable, and adds delta to the current value

• Similar interfaces available for LongInteger

18

COMP 322, Spring 2013 (V. Sarkar)

Work-Sharing Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. String[] X = ... ; int numTasks = ...;

4. AtomicInteger a = new AtomicInteger();

5. . . .

6. finish for (int i=0; i<numTasks; i++)

7. async {

8. do {

9. int j = a.getAndAdd(1);

10. // can also use a.getAndIncrement()

11. if (j >= X.length) break;

12. . . . // Process X[j]

13. } while (true);

14. } // finish-for-async

19

COMP 322, Spring 2013 (V. Sarkar)

Atomicity in standard vs. atomic variables

• Reads and write for reference variables and primitives
(except long and double) are atomic

• Basic safety guarantee: a read always returns a value
written by some task, some time in the past

• No “out-of-thin-air” values for references and primitives
(except for long and double)

• Atomic variables support compound atomic operations
that go beyond single read/write accesses

• Operations on atomic variables can be safely invoked
by parallel tasks, but (like isolated statements) they may
increase the critical path length of your parallel program

• Not a problem if the remaining parallel (non-atomic)
work is large

20

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated statements

21

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic Java
object in column 3. val refers to a field of type int.

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

22

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {
5. return parent.compareAndSet(null, n);
6. } // tryLabeling
7. void compute() {
8. for (int i=0; i<neighbors.length; i++) {
9. V child = neighbors[i];
10. if (child.tryLabeling(this))
11. async child.compute(); //escaping async
12. }
13. } // compute
14.} // class V
15.. . .
16.root.parent = root; // Use self-cycle to identify root
17.finish root.compute();
18.. . .

23

COMP 322, Spring 2013 (V. Sarkar)

Three cases of contention among
isolated statements

1. Low contention: when isolated statements are executed
infrequently

— Use of global isolated statements is usually the best approach. No
visible benefit from other techniques because they incur overhead
that is not needed since contention is low.

2. Moderate contention (no variable is a “hot spot”): when
serialization of all isolated statements limits performance, but
serializing only interfering isolated statements results in good
scalability

— Atomic variables and object-based isolation usually do well in this
scenario since the benefit obtained from reduced serialization
outweighs any extra overhead incurred.

3. High contention (one or more variables are hot spots): when
interfering isolated statements dominate the program execution
time

— Best approach in such cases is to find an alternative approach to
isolated e.g., use of finish/phaser accumulators

24

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #19:
Insertion of isolated for correctness

class IsolatedPRNG {
 private int seed;
 public int nextSeed() {
 int retVal;

 retVal = seed;

 seed = nextInt(retVal);

 return retVal;
 } // nextSeed()
 . . .
} // IsolatedPRNG

25

Name 1: ___________________ Name 2: ___________________

The goal of IsolatedPRNG is to implement a single Pseudo Random
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method
nextSeed() to avoid data races and guarantee proper semantics.

main() { // Pseudocode
 // Initial seed = 1
 IsolatedPRNG r = new IsolatedPRNG(1);
 async { print r.nextSeed(); ... }
 async { print r.nextSeed(); ... }
} // main()

