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Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914
• Lecture on “Linearizability” by Mila Oren

—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt 
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Worksheet #21: 
Interaction between finish and actors
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What would happen if the end-finish operation from slide 16 was 
moved from line 13 to line 11 as shown below? 

1. finish {
2.   int numThreads = 4;
3.   int numberOfHops = 10;
4.   ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5.   for(int i=numThreads-1;i>=0; i--) {
6.     ring[i] = new ThreadRingActor(i);
7.     ring[i].start();
8.     if (i < numThreads - 1) {
9.       ring[i].nextActor(ring[i + 1]);
10.   } }
11.  } // finish
12. ring[numThreads-1].nextActor(ring[0]);
13. ring[0].send(numberOfHops);

Deadlock: the end-finish 
operation in line 11 waits 
for all the actors created in 
line 7 to terminate, but the 
actors are waiting for the 
message sequence 
initiated in line 13 before 
they call exit()
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Recap of Monitors and Actors
Monitors:
• A monitor is a passive object containing local variables 

(private data) and methods that operate on local data 
(monitor regions) 

• Only one task can be active in a monitor at a time, 
executing some monitor region

Actors:
• An actor has mutable local state, a process() method to 

manipulate local state, and a thread of control to process 
incoming messages

• An actor may process messages, send messages, change 
local state, and create new actors
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The Actor Model: Fundamentals

• An actor may: 
—process 

messages 
—send 

messages
—change local 

state
—create new 

actors
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Actors - Simulating synchronous replies
l Actors are inherently asynchronous

l Synchronous replies require blocking operations --- async await can 
help
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Synchronous Reply using Async-Await
1. class SynchronousReplyActor1 extends Actor {

2. void process(Message msg) {

3.    if (msg instanceof Ping) {

4.       finish {

5.          DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

6.          otherActor.send(ddf);

7.          async await(ddf) {

8.             T synchronousReply = ddf.get();

9.             // do some processing with synchronous reply

10.         }

11.      } 

12.   } else if (msg instanceof ...) { ... } } }
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Actors – Global Consensus
l Global consensus is simple with barriers/phasers but can be complex 

with actors e.g.,

l First send message from master actor to participant actors 
signaling intention

l Wait for all participants to reply they are ready. Participants start 
ignoring messages sent to them apart from the master

l Once master confirms all participants are ready, master sends the 
request to each participant and waits for reply from each

l Master notifies participants that consensus has been reached, 
everyone can go back to normal functioning
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Parallelizing Actors in HJ
l Two techniques:

– Use finish construct to wrap asyncs in message processing body

• Finish ensures all spawned asyncs complete before next 
message returning from process()

– Allow escaping asyncs inside process() method

• WAIT! Won't escaping asyncs violate the one-message-at-a-
time rule in actors

• Solution: Use pause and resume
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Actors: pause and resume

l Paused state: actor will not process subsequent messages until it 
is resumed

l Pause an actor before returning from message processing body 
with escaping asyncs

l Resume actor when it is safe to process the next message
l Akin to Java’s wait/notify operations with locks



COMP 322, Spring 2013 (V. Sarkar)11

Synchronous Reply using Pause/Resume
1. class SynchronousReplyActor2 extends Actor {

2.   void process(Message msg) {

3.     if (msg instanceof Ping) {

4.       DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

5.       otherActor.send(ddf);

6.       async await(ddf) { // this async processes synchronous reply 

7.          T synchronousReply = ddf.get();

8.          // do some processing with synchronous reply

9.          resume(); // allow actor to process next message

10.       }

11.       pause(); // when paused, the actor doesn't process messages

12.     } else if (msg instanceof ...) { ... } } }
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Other uses of hybrid actor+task parallelism

l Can use finish to detect actor termination

l Event-driven tasks

l Stateless Actors

– If an actor has no state, it can process multiple messages in 
parallelism

l Pipeline Parallelism 

– Actors represent pipeline stages

– Use tasks to balance pipeline by parallelizing slower stages



COMP 322, Spring 2013 (V. Sarkar)

Concurrent Objects
• A concurrent object is an object that can correctly handle methods 

invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each method 
in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g., 
enclose each method in an object-based isolated statement) or 
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue 
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are concurrent 
while being as close to the semantics of the serial version as 
possible  
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Canonical Example of a 
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a 
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all 
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of the 
queue. 
– Throws EmptyException if the queue is empty. 

• What does it mean for a concurrent object like a FIFO queue 
to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order
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Describing the concurrent via the sequential 

time

q.deq

q.enq

 enq  deq

   isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is 
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Informal definition of Linearizability
• Assume that each method call takes effect 

“instantaneously” at some distinct point in time 
between its invocation and return.

• An execution is linearizable if we can choose 
instantaneous points that are consistent with a 
sequential execution in which methods are executed at 
those points

• A concurrent object is linearizable if all its executions 
are linearizable.
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Example 1

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable?  How many possible linearizations 
does it have?
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Example 4: execution of a monitor-based 
implementation of FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 5: Example execution of method 
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 5: Example execution of method 
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 6: yet another execution on a 
concurrent FIFO queue q

Is this a linearizable execution?
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Let’s figure it out in Worksheet 22!
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Linearizability of Concurrent Objects 
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods 
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points 
that are consistent with a sequential execution in which methods 
are executed at those points

• An object is linearizable if all its possible executions are 
linearizable
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Worksheet #22: 
Linearizability of method calls on a concurrent object
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Name 1: ___________________          Name 2: ___________________

Is this a linearizable execution for a FIFO queue, q?


