
COMP 322: Fundamentals of
Parallel Programming

Lecture 22: Actors (contd),
Linearizability of Concurrent Objects

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 22 11 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914
• Lecture on “Linearizability” by Mila Oren

—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

2

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #21:
Interaction between finish and actors

3

What would happen if the end-finish operation from slide 16 was
moved from line 13 to line 11 as shown below?

1. finish {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < numThreads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. } // finish
12. ring[numThreads-1].nextActor(ring[0]);
13. ring[0].send(numberOfHops);

Deadlock: the end-finish
operation in line 11 waits
for all the actors created in
line 7 to terminate, but the
actors are waiting for the
message sequence
initiated in line 13 before
they call exit()

COMP 322, Spring 2013 (V. Sarkar)

Recap of Monitors and Actors
Monitors:
• A monitor is a passive object containing local variables

(private data) and methods that operate on local data
(monitor regions)

• Only one task can be active in a monitor at a time,
executing some monitor region

Actors:
• An actor has mutable local state, a process() method to

manipulate local state, and a thread of control to process
incoming messages

• An actor may process messages, send messages, change
local state, and create new actors

4

COMP 322, Spring 2013 (V. Sarkar)

The Actor Model: Fundamentals

• An actor may:
—process

messages
—send

messages
—change local

state
—create new

actors

Thread

State

Procedure

Threa
d

State

Procedure

Thread
State

Procedure

Interface

Interface

Interface

Messages

create

5

COMP 322, Spring 2013 (V. Sarkar)6

Actors - Simulating synchronous replies
l Actors are inherently asynchronous

l Synchronous replies require blocking operations --- async await can
help

COMP 322, Spring 2013 (V. Sarkar)7

Synchronous Reply using Async-Await
1. class SynchronousReplyActor1 extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. finish {

5. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

6. otherActor.send(ddf);

7. async await(ddf) {

8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. }

11. }

12. } else if (msg instanceof ...) { ... } } }

COMP 322, Spring 2013 (V. Sarkar)8

Actors – Global Consensus
l Global consensus is simple with barriers/phasers but can be complex

with actors e.g.,

l First send message from master actor to participant actors
signaling intention

l Wait for all participants to reply they are ready. Participants start
ignoring messages sent to them apart from the master

l Once master confirms all participants are ready, master sends the
request to each participant and waits for reply from each

l Master notifies participants that consensus has been reached,
everyone can go back to normal functioning

COMP 322, Spring 2013 (V. Sarkar)9

Parallelizing Actors in HJ
l Two techniques:

– Use finish construct to wrap asyncs in message processing body

• Finish ensures all spawned asyncs complete before next
message returning from process()

– Allow escaping asyncs inside process() method

• WAIT! Won't escaping asyncs violate the one-message-at-a-
time rule in actors

• Solution: Use pause and resume

COMP 322, Spring 2013 (V. Sarkar)10

Actors: pause and resume

l Paused state: actor will not process subsequent messages until it
is resumed

l Pause an actor before returning from message processing body
with escaping asyncs

l Resume actor when it is safe to process the next message
l Akin to Java’s wait/notify operations with locks

COMP 322, Spring 2013 (V. Sarkar)11

Synchronous Reply using Pause/Resume
1. class SynchronousReplyActor2 extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();

5. otherActor.send(ddf);

6. async await(ddf) { // this async processes synchronous reply

7. T synchronousReply = ddf.get();

8. // do some processing with synchronous reply

9. resume(); // allow actor to process next message

10. }

11. pause(); // when paused, the actor doesn't process messages

12. } else if (msg instanceof ...) { ... } } }

COMP 322, Spring 2013 (V. Sarkar)12

Other uses of hybrid actor+task parallelism

l Can use finish to detect actor termination

l Event-driven tasks

l Stateless Actors

– If an actor has no state, it can process multiple messages in
parallelism

l Pipeline Parallelism

– Actors represent pipeline stages

– Use tasks to balance pipeline by parallelizing slower stages

COMP 322, Spring 2013 (V. Sarkar)

Concurrent Objects
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each method
in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are concurrent
while being as close to the semantics of the serial version as
possible

13

COMP 322, Spring 2013 (V. Sarkar)

Canonical Example of a
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of the
queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO queue
to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order

14

COMP 322, Spring 2013 (V. Sarkar)

Describing the concurrent via the sequential

time

q.deq

q.enq

 enq deq

 isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

15

COMP 322, Spring 2013 (V. Sarkar)

Informal definition of Linearizability
• Assume that each method call takes effect

“instantaneously” at some distinct point in time
between its invocation and return.

• An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed at
those points

• A concurrent object is linearizable if all its executions
are linearizable.

16

COMP 322, Spring 2013 (V. Sarkar)

Example 1

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

17

COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

18

COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

19

COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

20

COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

21

COMP 322, Spring 2013 (V. Sarkar)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

22

COMP 322, Spring 2013 (V. Sarkar)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

23

COMP 322, Spring 2013 (V. Sarkar)

Example 4: execution of a monitor-based
implementation of FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

24

COMP 322, Spring 2013 (V. Sarkar)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

25

COMP 322, Spring 2013 (V. Sarkar)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

26

COMP 322, Spring 2013 (V. Sarkar)

Example 6: yet another execution on a
concurrent FIFO queue q

Is this a linearizable execution?

27

Let’s figure it out in Worksheet 22!

COMP 322, Spring 2013 (V. Sarkar)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

• An object is linearizable if all its possible executions are
linearizable

28

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #22:
Linearizability of method calls on a concurrent object

29

Name 1: ___________________ Name 2: ___________________

Is this a linearizable execution for a FIFO queue, q?

