COMP 322: Fundamentals of
Parallel Programming

Lecture 22: Actors (contd),
Linearizability of Concurrent Objects

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 22 11 March 2013

Acknowledgments for Today’s Lecture

e Maurice Herlihy and Nir Shavit. The art of multiprocessor
programming. Morgan Kaufmann, 2008.

—Optional text for COMP 322

—Chapter 3 slides extracted from http://www.elsevierdirect.com/
companion.jsp?ISBN=9780123705914

* Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

2 COMP 322, Spring 2013 (V. Sarkar))

Worksheet #21:
Interaction between finish and actors

What would happen if the end-finish operation from slide 16 was
moved from line 13 to line 11 as shown below?

1. finish {

2. int numThreads = 4;

3. int numberOfHops = 10;

4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];

5. for(int i=numThreads-1;i>=0; i--) {

6. ring[i] = new ThreadRingActor(i); Deadlock: the end-finish
7. ring[i].start(); operation in line 11 waits
8. if (i < numThreads - 1) { for all the actors created in
9. ring[i] .nextActor(ring[i + 1]); line 7 to terminate, but the
10. } } actors are waiting for the
11. } // finish message sequence

12. ring[numThreads-1] .nextActor (ring[0]); initiated in line 13 before
13. ring[0] . send (numberOfHops) ; they call exit()

3 COMP 322, Spring 2013 (V. Sarkar) 2

Recap of Monitors and Actors

Monitors:
A monitor is a passive object containing local variables

(private data) and methods that operate on local data
(monitor regions)

* Only one task can be active in a monitor at a time,
executing some monitor region

Actors:

* An actor has mutable local state, a process() method to

manipulate local state, and a thread of control to process
incoming messages

* An actor may process messages, send messages, change
local state, and create new actors

4 COMP 322, Spring 2013 (V. Sarkar) %\Q

The Actor Model: Fundamentals

Thread

 An actor may:

—process
messages

—send
messages

—change local
state

—cCreate new
actors

S COMP 322, Spring 2013 (V. Sarkar)

Actors - Simulating synchronous replies

« Actors are inherently asynchronous

« Synchronous replies require blocking operations --- async await can
help

class CountMessage {
. ddf = new DataDrivenFuture();

int localCount = 0; class CounterActor extends Actor {
int counter = 0;
static int getAndIncrement(void process(Object m) {

CounterActor counterActor) {
1f (m instanceof CountMessage){

. msg = new CountMessage(); CountMessage msg = ...
counterActor.send(msg); counter++;
// use ddf to wait for response msg.localCount = counter;
// THREAD-BLOCKING msg.ddf .put(true);
finish { async await(msg.ddf) { }} ...
// return count from the message }}
return msg.localCount;

b}

6 COMP 322, Spring 2013 (V. Sarkar) %ﬁ

Synchronous Reply using Async-Await

1. class SynchronousReplyActorl extends Actor {

2. void process(Message msg) {

3. if (msg instanceof Ping) {

4. finish {

5. DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();
6. otherActor.send(ddf);

7. async await(ddf) {

8. T synchronousReply = ddf.get();

9. // do some processing with synchronous reply

10. }

11. }

12. } else if (msg instanceof ...) { ... } } }

7 COMP 322, Spring 2013 (V. Sarkar) %ﬁ

Actors — Global Consensus

* Global consensus is simple with barriers/phasers but can be complex
with actors e.g.,

» First send message from master actor to participant actors
signaling intention

« Wait for all participants to reply they are ready. Participants start
ignoring messages sent to them apart from the master

* Once master confirms all participants are ready, master sends the
request to each participant and waits for reply from each

« Master notifies participants that consensus has been reached,
everyone can go back to normal functioning

8 COMP 322, Spring 2013 (V. Sarkar) %;\4

Parallelizing Actors in HJ

 Two techniques:
— Use finish construct to wrap asyncs in message processing body

» Finish ensures all spawned asyncs complete before next
message returning from process()

— Allow escaping asyncs inside process() method

« WAIT! Won't escaping asyncs violate the one-message-at-a-
time rule in actors

« Solution: Use pause and resume

9 COMP 322, Spring 2013 (V. Sarkar) /@&

Actors: pause and resume

start STARTED exit
e pause resume TERMINATED

exit

 Paused state: actor will not process subsequent messages until it
is resumed

 Pause an actor before returning from message processing body
with escaping asyncs

« Resume actor when it is safe to process the next message

« AKkin to Java’s wait/notify operations with locks

10 COMP 322, Spring 2013 (V. Sarkar) %{’i

Synchronous Reply using Pause/Resume

10.

11.

12.

class SynchronousReplyActor2 extends Actor {
void process (Message msg) {
if (msg instanceof Ping) {
DataDrivenFuture<T> ddf = new DataDrivenFuture<T>();
otherActor.send(ddf);
async await(ddf) { // this async processes synchronous reply
T synchronousReply = ddf.get();
// do some processing with synchronous reply
resume(); // allow actor to process next message
}
pause(); // when paused, the actor doesn't process messages

} else if (msg instanceof ...) { ... } } }

11 COMP 322, Spring 2013 (V. Sarkar) %ﬁ

Other uses of hybrid actor+task parallelism

« (Can use finish to detect actor termination
 Event-driven tasks
o Stateless Actors

— If an actor has no state, it can process multiple messages in
parallelism

* Pipeline Parallelism
— Actors represent pipeline stages

— Use tasks to balance pipeline by parallelizing slower stages

12 COMP 322, Spring 2013 (V. Sarkar) A

Concurrent Objects

e A concurrent object is an object that can correctly handle methods
invoked in parallel by different tasks or threads

—Originated as monitors
—Also referred to as “thread-safe objects”

e For simplicity, it is usually assumed that the body of each method
in a concurrent object is itself sequential

—Assume that method does not create child async tasks

e Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue
and CopyOnWriteArraySet)

e A desirable goal is to develop implementations that are concurrent
while being as close to the semantics of the serial version as

possible

13 COMP 322, Spring 2013 (V. Sarkar) %{ﬂ

Canonical Example of a
Concurrent Object

e Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object

—Method q.enq(o) inserts object o at the tail of the queue

— Assume that there is unbounded space available for all
enq() operations to succeed

—Method gq.deq() removes and returns the item at the head of the
queue.

— Throws EmptyException if the queue is empty.
e What does it mean for a concurrent object like a FIFO queue
to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order

14 COMP 322, Spring 2013 (V. Sarkar) %ﬁ

Describing the concurrent via the sequential

q.deq

isglated-begin() isolated-end()

‘de

i q.enq i i

isolated-begin()*" ' isolatedrend() (sorovion o
"Sequential”
J

eng deq .

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

15 COMP 322, Spring 2013 (V. Sarkar) %}‘

Informal definition of Linearizability

e Assume that each method call takes effect
“instantaneously” at some distinct point in time
between its invocation and return.

e An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed at
those points

e A concurrent object is linearizable if all its executions
are linearizable.

16 COMP 322, Spring 2013 (V. Sarkar)

Example 1

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

17 COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

18 COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

19 COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

20 COMP 322, Spring 2013 (V. Sarkar)

Example 1 (contd)

q.en(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

21 COMP 322, Spring 2013 (V. Sarkar)

Example 2

22

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2013 (V. Sarkar)

Example 3

Is this execution linearizable? How many possible linearizations
does it have?

23 COMP 322, Spring 2013 (V. Sarkar) Z-S

Example 4: execution of a monitor-based
implementation of FIFO queue g

Is this a linearizable execution?

Time || Task A Task B
Invoke q.enq(x)
Work on g.enq(x)
Work on q.enq(x)
Return from q.enq(x)

Invoke q.enq(y)

Work on q.enq(y)
Work on q.enq(y)
Return from q.enq(y)
Invoke q.deq()

Return x from q.deq()

© 00O Ut W N —=O

Yes! Equivalent to “"q.enq(x) : q.enq(y) . q.deq():x"

24 COMP 322, Spring 2013 (V. Sarkar) %

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x) Invoke q.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

25

COMP 322, Spring 2013 (V. Sarkar)

A

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x) Invoke q.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

26

COMP 322, Spring 2013 (V. Sarkar)

A

Example 6: yet another execution on a
concurrent FIFO queue ¢

Is this a linearizable execution?

Time | Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

A

_

Let's figure it out in Worksheet 22|

27

COMP 322, Spring 2013 (V. Sarkar)

A

Linearizability of Concurrent Objects
(Summary)

Concurrent object

e A concurrent object is an object that can correctly handle methods
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, Atomicinteger

Linearizability

e Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

e An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

e An object is linearizable if all its possible executions are
linearizable

28 COMP 322, Spring 2013 (V. Sarkar) %\

Worksheet #22:
Linearizability of method calls on a concurrent object

Name 1: Name 2:

Is this a linearizable execution for a FIFO queue, q?

Time || Task A Task B
0 Invoke q.enq(x)

1 Return from q.enq(x)

2 Invoke q.enq(y)

3 Invoke q.deq() Work on q.enq(y)

4 Work on q.deq() Return from q.enq(y)
5!

Return y from q.deq()

TG
29 COMP 322, Spring 2013 (V. Sarkar) Z\x‘

