COMP 322: Fundamentals of Parallel Programming

Lecture 35: Map Reduce

Vivek Sarkar
Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
Outline

- **Map Reduce Programming Model and Runtime System**
- **Map Reduce Algorithms**
Mainstream trends

Personal Mobile Devices (PMD): Relying on wireless networking, Apple, Nokia, ... build $500 smartphone and tablet computers for individuals
=> Objective C, Android OS

Cloud Computing:
Using Local Area Networks, Amazon, Google, ... build $200M Warehouse Scale Computers with 100,000 servers for Internet Services for PMDs
=> MapReduce, Ruby on Rails
Motivation: Large Scale Data Processing

• Want to process terabytes of raw data
 — documents found by a web crawl
 — web request logs

• Produce various kinds of derived read-only/append-only data
 — inverted indices
 – e.g. mapping from words to locations in documents
 — various representations of graph structure of documents
 — summaries of number of pages crawled per host
 — most frequent queries in a given day
 — ...

• Input data is large

• Need to parallelize computation so it takes reasonable time
 — need hundreds/thousands of CPUs

• Need for fault tolerance
MapReduce Solution

• Apply **Map** function f to user supplied record of key-value pairs
• Compute set of intermediate key/value pairs
• Apply **Reduce** operation g to all values that share same key to combine derived data properly
 — *Often produces smaller set of values*
• User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance
Operations on Sets of Key-Value Pairs

• Input set is of the form \{\((k_1, v_1), \ldots (k_n, v_n)\}\}, where \((k_i, v_i)\) consists of a key, \(k_i\), and a value, \(v_i\).
 —Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.

• Map function \(f\) generates sets of intermediate key-value pairs, \(f(k_i,v_i) = \{(k_1',v_1'),\ldots(k_m',v_m')\}\). The \(k_j'\) keys can be different from \(k_i\) key in the input of the map function.
 —Assume that a flatten operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.

• Reduce operation groups together intermediate key-value pairs, \\{(k', v_j')\}\ with the same \(k'\), and generates a reduced key-value pair, \((k',v'')\), for each such \(k'\), using reduce function \(g\).
MapReduce: The Map Step

Input set of key-value pairs

Flattened intermediate set of key-value pairs

MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

WordCount example

Input: set of words
Output: set of (word,count) pairs

Algorithm:
1. For each input word W, emit (W, 1) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key (reduce step).

- All map operations in step 1 can execute in parallel with only local data accesses
- Step 2 may involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
- Step 3 performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

Bucket sort to get same keys together

2000 servers => ≈ 200,000 Map Tasks, ≈ 5,000 Reduce tasks
PseudoCode for WordCount

1. map(String input_key, String input_value):
2. // input_key: document name
3. // input_value: document contents
4. for each word w in input_value:
5. EmitIntermediate(w, "1"); // Produce count of words
6.
7. reduce(String output_key, Iterator intermediate_values):
8. // output_key: a word
9. // intermediate_values: a list of counts
10. int result = 0;
11. for each v in intermediate_values:
12. result += ParseInt(v); // get integer from key-value
13. Emit(AsString(result));
Example Execution of WordCount Program

Distribute

that that is is that that is not is not is that it it is

Map 1 is 1, that 2
Map 2 is 1, that 2
Map 3 is 2, not 2
Map 4 is 2, it 2, that 1

Shuffle

that 2,2,1 not 2; that 5

Reduce 1
 is 1,1,2,2 it 2
 is 6; it 2

Collect

is 6; it 2; not 2; that 5

Reduce 2
 not 2; that 5
Overall schematic for MapReduce framework on a data center cluster

1. **Input key-value pairs**
 - Data store 1
 - Data store n

2. **Map**
 - (key 1, values…)
 - (key 2, values…)
 - (key 3, values…)
 - (key 1, values…)
 - (key 2, values…)
 - (key 3, values…)

3. **Barrier**: Aggregates intermediate values by output key
 - key 1, intermediate values
 - key 2, intermediate values
 - key 3, intermediate values

4. **Reduce**
 - final key 1 values
 - final key 2 values
 - final key 3 values
MapReduce is a Data-Parallel form of the “Divide and Conquer” Pattern

• Map:
 — Slice data into “shards” or “splits”, distribute these to workers, compute sub-problem solutions
 — map(in_key, in_value) -> list(out_key, intermediate value)
 – Processes input key/value pair
 – Produces set of intermediate pairs

• Reduce:
 — Collect and combine sub-problem solutions
 — reduce(out_key, list(intermediate_value)) -> list(out_value)
 – Combines all intermediate values for a particular key
 – Produces a set of merged output values

• Easy to use: focus on problem, let MapReduce library deal with messy details
MapReduce Failure Handling

• On worker failure:
 — Detect failure via periodic heartbeats
 — Re-execute completed and in-progress map tasks
 — Re-execute in progress reduce tasks
 — Task completion committed through master

• Master failure:
 — Could handle, but don't yet (master failure unlikely)

• Robust: lost 1600 of 1800 machines once, but finished fine
MapReduce Redundant Execution

• Slow workers significantly lengthen completion time
 — Other jobs consuming resources on machine
 — Bad disks with soft errors transfer data very slowly
 — Weird things: processor caches disabled (!!)
• Solution: Near end of phase, spawn backup copies of incomplete tasks
 — Whichever one finishes first "wins"
• Effect: Dramatically shortens job completion time
 — 3% more resources, large tasks 30% faster
MapReduce Locality Optimization during Scheduling

• Master scheduling policy:
 — Asks GFS (Google File System) for locations of replicas of input file blocks
 — Map tasks typically split into 64MB (== GFS block size)
 — Map tasks scheduled so GFS input block replica are on same machine or same rack

• Effect: Thousands of machines read input at local disk speed

• Without this, rack switches limit read rate
Additional Optimization: Combiner Functions

• “Combiner” functions can run on same machine as a mapper
• Causes a mini-reduce phase to occur before the real reduce phase, to save bandwidth
Summary of MapReduce API

- Programmers must specify:
 \[\text{map} \ (k, \ v) \rightarrow \text{list}(\langle k',\ v'\rangle) \]
 \[\text{reduce} \ (k', \ \text{list}(v')) \rightarrow \langle k'',\ v''\rangle \]

 All values with the same key are reduced together

 Optionally, also:
 \[\text{partition} \ (k', \ \text{number of partitions}) \rightarrow \text{partition for } k' \]

 Often a simple hash of the key, e.g., hash(k') mod n
 Divides up key space for parallel reduce operations

 \[\text{combine} \ (k', \ v') \rightarrow \langle k',\ v'\rangle^* \]

 Mini-reducers that run in memory after the map phase
 Used as an optimization to reduce network traffic

 The execution framework handles everything else...
Google Uses MapReduce For …

- **Web crawl**: Find outgoing links from HTML documents, aggregate by target document
- **Google Search**: Generating inverted index files using a compression scheme
- **Google Earth**: Stitching overlapping satellite images to remove seams and to select high-quality imagery
- **Google Maps**: Processing all road segments on Earth and render map tile images that display segments
- More than 10,000 MR programs at Google in 4 years, run 100,000 MR jobs per day (2008)
MapReduce Popularity at Google

<table>
<thead>
<tr>
<th></th>
<th>Aug-04</th>
<th>Mar-06</th>
<th>Sep-07</th>
<th>Sep-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of MapReduce jobs</td>
<td>29,000</td>
<td>171,000</td>
<td>2,217,000</td>
<td>3,467,000</td>
</tr>
<tr>
<td>Average completion time</td>
<td>634</td>
<td>874</td>
<td>395</td>
<td>475</td>
</tr>
<tr>
<td>(secs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server years used</td>
<td>217</td>
<td>2,002</td>
<td>11,081</td>
<td>25,562</td>
</tr>
<tr>
<td>Input data read (TB)</td>
<td>3,288</td>
<td>52,254</td>
<td>403,152</td>
<td>544,130</td>
</tr>
<tr>
<td>Intermediate data (TB)</td>
<td>758</td>
<td>6,743</td>
<td>34,774</td>
<td>90,120</td>
</tr>
<tr>
<td>Output data written (TB)</td>
<td>193</td>
<td>2,970</td>
<td>14,018</td>
<td>57,520</td>
</tr>
<tr>
<td>Average number servers /</td>
<td>157</td>
<td>268</td>
<td>394</td>
<td>488</td>
</tr>
<tr>
<td>job</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Map Reduce Programming Model and Runtime System
- Map Reduce Algorithms
Algorithms for MapReduce

- Sorting
- Searching
- Indexing
- Classification
- TF-IDF
- Breadth-First Search / SSSP
- PageRank
- Clustering
Sort Algorithm

- Takes advantage of reducer properties: (key, value) pairs are processed in order by key; reducers are themselves ordered by hash function.
- Mapper: Identity function for value
 \[(k, v) \rightarrow (v, _)\]
- Reducer: Identity function \[(k', _) \rightarrow (k', "")\]
- Trick: (key, value) pairs from mappers are sent to a particular reducer based on hash(key)
 - Must pick the hash function for your data such that \[k_1 < k_2 \Rightarrow \text{hash}(k_1) < \text{hash}(k_2)\]
Inverted Index: Data flow

- Let’s try this out in Worksheet #35!
TF-IDF

- Term Frequency – Inverse Document Frequency
 - Relevant to text processing
 - Common web analysis algorithm

\[
\begin{align*}
 tf_i &= \frac{n_i}{\sum_k n_k} \\
 idf_i &= \log \frac{|D|}{|\{d : t_i \in d\}|} \\
 tfidf &= tf \cdot idf
\end{align*}
\]

- \(|D|\) : total number of documents in the corpus
- \(|\{d : t_i \in d\}|\) : number of documents where the term \(t_i\) appears (that is \(n_i \neq 0\)).
Information We Need

- Number of times term X appears in a given document
- Number of terms in each document
- Number of documents X appears in
- Total number of documents
Job 1: Word Frequency in Doc

- **Mapper**
 - Input: (docname, contents)
 - Output: ((word, docname), 1)

- **Reducer**
 - Sums counts for word in document
 - Outputs ((word, docname), n)

- **Combiner** is same as **Reducer**
Job 2: Word Counts For Docs

- **Mapper**
 - Input: ((word, docname), \(n\))
 - Output: (docname, (word, \(n\)))

- **Reducer**
 - Sums frequency of individual \(n\)'s in same doc
 - Feeds original data through
 - Outputs ((word, docname), (\(n\), \(N\)))
Job 3: Word Frequency In Corpus

- Mapper
 - Input: ((word, docname), (n, N))
 - Output: (word, (docname, n, N, 1))

- Reducer
 - Sums counts for word in corpus
 - Outputs ((word, docname), (n, N, m))
Job 4: Calculate TF-IDF

- **Mapper**
 - Input: ((word, docname), (n, N, m))
 - Assume D is known (or, easy MR to find it)
 - Output ((word, docname), TF*IDF)

- **Reducer**
 - Just the identity function
Breadth-First Search (BFS): Motivating Concepts

• Performing computation on a graph data structure requires processing at each node
• Each node contains node-specific data as well as links (edges) to other nodes
• Computation must traverse the graph and perform the computation step

• How do we traverse a graph in MapReduce? How do we represent the graph for this?
Breadth-First Search

- Breadth-First Search is an *iterated* algorithm over graphs
- Frontier advances from origin by one level with each pass
Breadth-First Search & MapReduce

• Problem: This doesn't “fit” into MapReduce
• Solution: Iterated passes through MapReduce – map some nodes, result includes additional nodes which are fed into successive MapReduce passes
Adjacency Matrices

- Another classic graph representation. M[i][j] = '1' implies a link from node i to j.
- Naturally encapsulates iteration over nodes

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 1 & 1 \\
3 & 0 & 1 & 0 & 0 \\
4 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Adjacency Matrices: Sparse Representation

- Adjacency matrix for most large graphs (e.g., the web) will be overwhelmingly full of zeros.
- Each row of the graph is too long to store in a dense manner.
- Sparse matrices only include non-zero elements.

1: 3, 18, 200
2: 6, 12, 80, 400
3: 1, 14
...

Finding the Shortest Path

- A common graph search application is finding the shortest path from a start node to one or more target nodes.
- Commonly done on a single machine with Dijkstra's Algorithm.
- Can we use BFS to find the shortest path via MapReduce?

This is called the single-source shortest path problem. (a.k.a. SSSP)
Finding the Shortest Path: Intuition

- We can define the solution to this problem inductively:
 - DistanceTo(startNode) = 0
 - For all nodes \(n \) directly reachable from startNode, DistanceTo(n) = 1
 - For all nodes \(n \) reachable from some other set of nodes \(S \),
 DistanceTo(n) = 1 + min(DistanceTo(m), m \in S)

Algorithm:

- A map task receives a node \(n \) as a key, and \((D, \text{points-to})\) as its value
 - \(D \) is the distance to the node from the start
 - \(\text{points-to} \) is a list of nodes reachable from \(n \)
 - \(\forall p \in \text{points-to}, \text{emit} (p, D+1) \)

- Reduce task gathers possible distances to a given \(p \) and selects the minimum one
Termination

• This algorithm starts from one node
• Subsequent iterations include many more nodes of the graph as frontier advances
• Does this ever terminate?
 – Yes! Eventually, routes between nodes will stop being discovered and no better distances will be found. When distance is the same, we stop
 – Mapper should emit \((n, D)\) to ensure that “current distance” is carried into the reducer
• Weighted-edge shortest path is more useful than cost==1 approach
 – Simple change: points-to list in map task includes a weight 'w' for each pointed-to node
 – emit \((p, D+w)\) instead of \((p, D+1)\) for each node \(p\)
 – Works for positive-weighted graph
Summary of Warehouse Scale Computing and Map Reduce

• Request-Level Parallelism
 — High request volume, each largely independent of other
 — Use replication for better request throughput, availability

• MapReduce Data Parallelism
 — Map: Divide large data set into pieces for independent parallel processing
 — Reduce: Combine and process intermediate results to obtain final result

• WSC CapEx vs. OpEx
 — Economies of scale mean WSC can sell computing as a utility
 — Servers currently dominate capital expense, and power distribution, cooling infrastructure dominate operating expense
Worksheet #35: Inverted Index

Name 1: ___________________ Name 2: ___________________

Assume an input set of key-value pairs of the form (file, word). Define the map and reduce functions to get an inverted index consisting of (word, file) key-value pairs.