
COMP 322: Fundamentals of
Parallel Programming

Lecture 5: Data Races, Determinism,
Memory Consistency Models

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 5 16 January 2013

COMP 322, Spring 2013 (V.Sarkar)2

Solution to Worksheet #4: how many processors
should we use for ArraySum?

For ArraySum on P processors and input array size, S,
Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))
• Question: For a given S, what value of P should we choose

to obtain Efficiency(P) = 0.5? Recall that Efficiency(P) = 0.5
⇒ Speedup(S,P)/P = 0.5.

• Answer (derive value of P as a symbolic function of S):
. . . ⇒ P = S/log2(S)

• Check answer by observing that S/P = log2(S) ⇒

Speedup(S,P) = S/(log2(S) + log2(S)) = S/(2*log2(S)) = P/2

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Data Races and Determinism

• Memory Consistency Models

• Acknowledgments
—COMP 322 Module 1 handout, Chapter 4

– https://svn.rice.edu/r/comp322/course/module1-2013-01-06.pdf

3

COMP 322, Spring 2013 (V.Sarkar)

Parallel Programming Challenges
• Correctness

—New classes of bugs can arise in parallel programming, relative to
sequential programming
– Data races, deadlock, nondeterminism

• Performance
—Performance of parallel program depends on underlying parallel system
– Language compiler and runtime system
– Processor structure and memory hierarchy
– Degree of parallelism in program vs. hardware

• Portability
—A buggy program that runs correctly on one system may not run

correctly on another (or even when re-executed on the same system)
—A parallel program that performs well on one system may perform

poorly on another

4

COMP 322, Spring 2013 (V.Sarkar)

Bank Account Example
1. static int familyAccountBalance = 1000; // shared location

2. . . .

3. // parent deposits $100 to family account

4. async {

5. parentAccountBalance = parentAccountBalance - 100;

6. familyAccountBalance = familyAccountBalance + 100;

7. }

8. . . .

9. // student withdraws $100 from family account

10. async {

11. familyAccountBalance = familyAccountBalance - 100;

12. studentAccountBalance = studentAccountBalance + 100;

13. }

Question: What possible values can familyAccountBalance have after both async tasks
have completed? Answer: 900, 1000, or 1100 !

5

COMP 322, Spring 2013 (V.Sarkar)6

Formal Definition of Data Races
 Formally, a data race occurs on location L in a program

execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1

i.e., there is no path of dependence edges from S1 to S2 or
from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the
accesses is a write. (L must be a shared location i.e., a
static field, instance field, or array element.)

 Data races are challenging because of
• Nondeterminism: different executions of the parallel

program with the same input may result in different outputs.
• Debugging and Testing: it is usually impossible to guarantee

that all possible orderings of the accesses to a location will
be encountered during program debugging and testing.

COMP 322, Spring 2013 (V.Sarkar)

Examples of Data Races
(Listing 5, Module 1 --- incorrect parallel versions)

1. // Example 1: Incorrect parallel version

2. for (int i = 0; i < A.length; i++) async A[i] = B[i] + C[i];

3. System.out.println(A[0]);

4.

5. // Example 2: Incorrect parallel version

6. p = first;

7. while (p != null) {

8. async { p.x = p.y + p.z; }

9. p = p.next;

10. }

11. System.out.println(first.x);

7

COMP 322, Spring 2013 (V.Sarkar)

static
fields

SHARED

Local vars

PRIVATE

heap
data:

objects,
arrays

SHARED

Local vars

PRIVATE

Shared and Private data in
Java’s Storage Model (Recap)

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for
variables that are not allocated or destroyed during
a class’ lifetime, such as static fields.
• Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically
allocated objects and arrays (created by “new”).
• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java
allocates a new block of memory called a stack
frame to hold its local variables
• Local variables are private to a given thread/task

All references (pointers) must point to heap data --- no
references can point to static or stack data

. . .

8

public void run() {
 Point p1 = new Point(0, 0);
 Point p2 = new Point(200, 200);
 Line line = new Line(p1, p2); // Heap-stack diagram is for this stmt
}

public class Line {
 public Line(Point p1,
 Point p2) {
 start = p1;
 finish = p2;
 }
 . . .
 private Point start;
 private Point finish;
}

public class Point {
 public Point(int x, int y) {
 cx = x;
 cy = y;
 }
 . . .
 private int cx;
 private int cy;
}

COMP 322, Spring 2013 (V.Sarkar)

 finish
 start

200cy
200cx

0cy
0cx

p1
p2
line

heap

stack
frame

Example of Stack-to-Heap and
Heap-to-Heap Pointers

9

COMP 322, Spring 2013 (V.Sarkar)10

“hi”“high”

Mutability

• If an object is modified, all references to the object
see the new value

sb
java.lang.StringBuffer

tb

StringBuffer sb = new (“hi”);
StringBuffer tb = sb;
tb.append (“gh”);Stack Frame

Heap Object

COMP 322, Spring 2013 (V.Sarkar)11

Parameter Passing in Java
• Call-by-value: All parameters in Java are passed by value. The method
receives a copy of the parameter, not the caller’s local variable.

• Parameters can only contain primitives and references. Copying a reference
(pointer) does not make a copy of the object pointed to.

• Caller and callee methods can communicate in the following ways
—Parameters: callee receives a parameter from the caller in the form of a

local variable (stack data)
—Return values: callee can return a single value as a local variable for

the caller (stack data)
—Caller and callee can both read/write the same static fields (static data)
—Caller and callee can both read/write the same objects and arrays (heap

data)

These data sharing rules apply to tasks as well

{

COMP 322, Spring 2013 (V.Sarkar)12

Five Observations related to Data Races
1. Immutability property: there cannot be a data race on shared

immutable data.
— A location, L, is immutable if it is only written during initialization, and

can only be read after initialization. In this case, no read can
potentially execute in parallel with the write.

• Parallel programming tip: use immutable objects and arrays to
avoid data races
—Will require making copies of objects and arrays for updates
—Copying overhead may be prohibitive in some cases, but acceptable in

others

• Example with java.lang.String
1. finish {

2. String s1 = "XYZ";

3. async { String s2 = s1.toLowerCase(); ... }

4. System.out.println(s1);

5. }

COMP 322, Spring 2013 (V.Sarkar)13

Observations
2. Single-task ownership property: there cannot be a data race on a

location that is only read or written by a single task.
— Define: step S in computation graph CG “owns” location L if S

performs a read or write access on L. If step S belongs to Task T, we
can also say that Task T owns L when executing S.

— Consider a location L that is only owned by steps that belong to the
same task, T. Since all steps in Task T must be connected by
continue edges in CG, all reads and writes to L must be ordered by
the dependences in CG. Therefore, no data race is possible on
location L.

• Parallel programming tip: if an object or array needs to be written
multiple times after initialization, then try and restrict its
ownership to a single task.
— Will require making copies when sharing the object or array with

other tasks.

COMP 322, Spring 2013 (V.Sarkar)14

Example of Single-task ownership
with Copying

• If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task.
—Entails making copies when sharing the object with other tasks.
—As with Immutability, copying overhead may be prohibitive in some cases, but

acceptable in others.

• Example
1.finish { // Task T1 owns A

2. int[] A = new int[n]; // ... initialize array A ...

3. // create a copy of array A in B

4. int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);

5. async { // Task T2 owns B

6. int sum = computeSum(B,0,B.length-1);// Modifies B as in ArraySum1

7. System.out.println("sum = " + sum);

8. }

9. // ... update Array A ...

10. System.out.println(Arrays.toString(A)); //printed by task T1

11.}

COMP 322, Spring 2013 (V.Sarkar)15

Observations (contd)
3. Ownership-transfer property: there cannot be a data race on a

location if all steps that read or write it are totally ordered in CG
(i.e., if the steps belong to a single directed path)
— Think of the ownership of L being ``transferred'' from one step to

another, even across task boundaries, as execution follows the path
of dependence edges in the total order.

• Parallel programming tip:
— If an object or array needs to be written multiple times after

initialization and also accessed by multiple tasks, then try and
ensure that all the steps that read or write a location L in the object/
array are totally ordered by dependences in CG.

– Ownership transfer is even necessary to support single-task
ownership. In the previous example, since Task T1 initializes
array B as a copy of array A, T1 is the original owner of A. The
ownership of B is then transferred from T1 to T2 when Task T2 is
created.

COMP 322, Spring 2013 (V.Sarkar)16

Observations (contd)
4. Local-variable ownership property: there cannot be a data race

on a local variable.
— If L is a local variable, it can only be written by the task in which it is

declared (L's owner). The copy-in semantics for local variables
ensures that the value of the local variable is copied on async
creation thus guaranteeing that there is no race condition between
the read access in the descendant task and the write access in L’s
owner.

• Parallel programming tip:
— You do not need to worry about data races on local variables, since

they are not possible. However, local variables in Java are restricted
to contain primitive data types (such as int) and references to
objects and arrays. In the case of object/array references, be aware
that there may be a data race on the underlying object even if there
is no data race on the local variable that refers to (points to) the
object.

COMP 322, Spring 2013 (V.Sarkar)

Relating Data Races and Determinism
• A parallel program is said to be deterministic with respect to

its inputs if it always computes the same answer when given
the same inputs.

• Structural Determinism Property
—If a parallel program is written using the constructs in Module 1 and is

guaranteed to be race-free, then it must be deterministic with respect
to its inputs. The final computation graph is also guaranteed to be the
same for all executions of the program with the same inputs.

• Constructs introduced in Module 1 (“Deterministic Shared-
Memory Parallelism”) include async, finish, finish
accumulators, futures, data-driven tasks (async await),
forall, barriers, phasers, and phaser accumulators.
—The notable exceptions are critical sections, isolated statements, and

actors, all of which will be covered in Module 2 (“Nondeterministic
Shared-Memory Parallelism”)

17

COMP 322, Spring 2013 (V.Sarkar)18

Worksheet #5: Data Races and Determinism

Consider a modified String Search program that returns true if any
occurrence is found, rather than the count of all occurrences:
1. static boolean found = false; // static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++)

4. async {

5. for (j = 0; j < M; j++)

6. if (text[i+j] != pattern[j]) break;

7. if (j == M) found = true; // found at offset i

8. } // finish-for-async

Question: Does this program have a data race? Is it deterministic? Why?

(Use the space below this slide for your answer)

Name 1: ___________________ Name 2: ___________________

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture
• Data Races and Determinism
• Memory Consistency Models

• Acknowledgments
—COMP 322 Module 1 handout, Chapter 4
– https://svn.rice.edu/r/comp322/course/module1-2013-01-06.pdf

19

COMP 322, Spring 2013 (V.Sarkar)

Data Races are usually Errors,
but not always

• Example of Data Race Error
1. for (p = first; p != null; p = p.next)
2. async p.x = p.y + p.z;
3. for (p = first; p != null; p = p.next)
4. sum += p.x;

• Example of intentional (benign) data race
• Search algorithm that returns any match (need not be the first match)
1. static int index = -1; // static field
2. . . .
3. finish for (int i = 0; i <= N - M; i++) async {
4. for (j = 0; j < M; j++)
5. if (text[i+j] != pattern[j]) break;
6. if (j == M) index = i; // found at offset i
7. }

• In both cases, the semantics of data races still needs to be fully
specified

20

COMP 322, Spring 2013 (V.Sarkar)21

Semantics of Data Races
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. System.out.println("First read = " + p.x);

11. System.out.println("Second read = " + q.x);

12. System.out.println("Third read = " + p.x);

13.}

Task T1 Task T2

Task T3 Task T4

p.x=1; p.x=2;

...=p.x;

...=q.x;

...=p.x;

...=p.x;

...=p.x;

...=p.x;

Can the following values be
printed by tasks T3 & T4?

T3: 0, 0, 0
T4: 1, 2, 1

COMP 322, Spring 2013 (V.Sarkar)22

Consider a “reasonable” code transformation performed
by a programmer: is it legal according to SC?

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15.}

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

COMP 322, Spring 2013 (V.Sarkar)

Memory Consistency Models
• A memory consistency model, or memory model, is the

part of a programming language specification that defines
what write values a read may see in the presence of data
races.

• We will briefly introduce three memory models, and
discuss them in more detail later in the course
—Sequential Consistency (SC)
– Suitable for specifying semantics at the hardware and OS

levels
—Java Memory Model (JMM)
– Suitable for specifying semantics at worker thread level

—Habanero Java Memory Model (HJMM)
– Suitable for specifying semantics at application task level

SC

JMM

HJMM

23

