

 1

Review & Computing with First-class Functions

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

 COMP 210, Spring 2011

2

Plan for today

• Review of the design recipe
including some in-class drill.

• More immersion in computing with
functions as values.

 COMP 210, Spring 2011

3

Review: the Design Recipe
How should I go about writing programs?
 Analyze problem, which includes:

 defining any requisite data types (and correspondig templates) that are
not primitive;

 determining what top-level (visible) functions must written.
 For each top-level function f to be written:

 State contract (type signature) and purpose of f.
 Give input-output examples for f written as tests
 Select and instantiate a template for the function body. In most cases,

the template is simple structural recursion. Other common examples
include:
 a degenerate template, e.g. trivial function, delegation to help function
 minor variations on structural recursion

 simultaneous structural recursion, e.g. adding two vectors represented as lists
 extra base cases, but often better handled by a help function, e.g. max of list

 a generative recursion template.
 Code the function by filling in the template
 Run the tests and confirm that they succeed.

 COMP 210, Spring 2011

4

Addendum to the Design Recipe
 Writing a function may require help functions. Add these

functions to the list of functions to be written.
 Use local? No. Use local only for

 defining values (other than functions) that are used more
than once,

 to factor the definition of a complex value into a series of
simpler values, or

 to construct a non-trivial closure that closes over a free
variable.

 Sometimes, we slightly deviate from standard templates
 Extra base cases

 COMP 210, Spring 2011

5

Extra Base Cases?
; fib: nat -> nat

; Purpose computes nth Fibonacci number (inefficiently)
(define (fib n)
 (cond [(= n 0) 1)]
 [(= n 1) 1)]
 [else (+ (fib (- n 1)) (fib (- n 2)))]))

; max-list: list-of-numbers -> number
; Purpose: (max-list lon) finds the maximum element in
; lon; throws an error on the empty list

(define (max-list lon)
 (cond [(empty? lon) (error 'max-list "applied to empty")]
 [else (ml-help (first lon) (rest lon))])))

(define (ml-help ans)
 (cond [(empty? lon) ans]
 [(< ans (first lon)) (ml-help (first lon) (rest lon))]
 [else (ml-help ans (rest lon))]))]

 COMP 210, Spring 2011

6

What goes in a template?
 Division into cases corresponding to an inductive definition of

the data (which may be simply a union).
 Identification of recursive sub-problems (form of recursive

calls)
 No calls on auxiliary functions or predicates other than

those required for case analysis, such as:
 testing that input has form assumed in contract
 including logic from the "glue" code (what is inserted in the ellipsis of

a properly written template)

and those that appear in explicit form of recursive calls in
generative recursion.

 COMP 210, Spring 2011

7

Template vs. Template Instantiation
 Template is part of a data definition

 function name is generic
 extra arguments to function are unspecified

 Template Instantiation is a prelude to
writing a specific function. After you select
the appropriate template, you tailor it to
the function you are writing:
 function name is specific
 extra argument are specified in header and in

recursive calls if possible
 Nothing else appears in a template
instantiation.

 COMP 210, Spring 2011

8

More review materials
• Homework problems
• Look at past first and second mid-terms

from Comp 210, ignoring last 5 pages
of 2nd exam which cover

• Parsing
• Graph traversal
• Software engineering trade-off questions

 COMP 210, Spring 2011

9

Exam Description
• Take home. Closed book. Closed

computer.
• Don't worry about Scheme library

functions. You will be given all of
the operations you can use in
coding.

• Three and 1/2 hours with optional
15 minute break in middle.

 COMP 210, Spring 2011

10

Class exercise
• Write insert-everywhere/in-all-words

(problem 12.4.2 from HTDP)
• See link to 12.4.2.sol.ss on wiki

 COMP 210, Spring 2011

11

Using Functions to Represent Objects
• How can we represent a pair so that the only operations that

code can perform on pairs are:
 (create-pair x y)
 (pair-first p)
 (pair-second p)
 (pair-equal? p1 p2)

• What if we represent a pair as a list? As a struct? Structs are
not as robust as you might think. In the advanced language
level try:
 (define-struct Pair (first second))
 (define p (make-Pair 1 2))
 (set-Pair-first! P 17)
 p

•

 COMP 210, Spring 2011

12

For Next Class
• New Homework due Monday
• Reading: review for the exam.
• Exam distributed on Monday
• Due Wednesday after break.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

