
1

Vectors and Iteration

Corky Cartwright

Vivek Sarkar

Department of Computer Science

Rice University

COMP 211, Spring
2010 2

Outline
• Vectors in Scheme

• Functional vs. Imperative views of
• Iteration
• Arrays

• Today’s lecture is all bonus material!
• Will not be covered in test or

homework

COMP 211, Spring
2010 3

A First Look at Vectors
(Section 29.3)

Goal: array-like data structure with O(1)
lookup time for a given index

• Vector creation
• (vector V-0 ... V-n) creates a vector with

n+1 elements, V-0 through V-n
• (build-vector n f) creates a vector with n

elements, (f 0) through (f (- n 1))
• Simple case of an array comprehension

COMP 211, Spring
2010 4

Vector Operations (contd)

• (vector-length V) returns the number of
items in vector V

• Results in an error if V is not a vector
• (vector-ref V i) returns the ith item in

vector V
• Results in an error if V is not a vector or i is not

a number or i < 0 or i >= (vector-length V)
• (vector? V) returns true if V is a vector

Simple example: sum-of-3

;; vector-sum-of-3 :

;; (vector number number number)-> number

;; Return sum of first three items of vector

(define (vector-sum-of-3 v)

 (+ (vector-ref v 0)

 (vector-ref v 1)

 (vector-ref v 2)))

• Example: (vector-sum-of-3 (vector 2 4 6 8 10))

• NOTE: vector is like cons, and vector-ref is like first/rest

COMP 211, Spring
2010 5

Binary Search on a Sorted
Vector of Numbers

;; bin-srch: asvon number number number -> number

;; For input vector V, value X, lower & upper bounds

;; lo and hi, return index i in lo … hi such that

;; (vector-ref V i) = X, else return -1 if X not found

;; NOTE: use Advanced Student setting to use vectors

(define (bin-srch V X lo hi)

 (let ((mid (floor (/ (+ lo hi) 2))))

 (cond

 ((> lo hi) -1)

 ((= (vector-ref V mid) X) mid)

 ((> (vector-ref V mid) X) (bin-srch V X lo(- mid 1)))

 ((< (vector-ref V mid) X) (bin-srch V X (+ mid 1) hi)))

))

COMP 211, Spring 2010 6

Execution Time
Complexity
• What is the execution time complexity

of binary search using a vector?

• How would the complexity of binary
search change if we replaced the vector
by a list of pairs (and used list-ref
instead of vector-ref)?

COMP 211, Spring
2010 7

Vectors vs. lists
• Pro: vector-ref can be used to access any

element in a vector in O(1) time
• Multiple first/rest operations may be needed to

traverse a list
• Con: extending a vector or extracting from

a vector takes O(n) time
• Constructing a list with a new element at the

start of an existing list takes O(1) time (cons)
• Extracting the tail of a list takes O(1) time (rest)

COMP 211, Spring
2010 8

Iteration
• Iterating over a vector/list in a functional

language is usually accomplished by
(tail) recursion

• Iterating over a vector/list in an
imperative language is usually
accomplished by iteration

• e.g., while-loops and for-loops in Java
• Does this mean that iteration is

inherently non-functional?

COMP 211, Spring
2010 9

Sisal: Example of a
Functional Language with
Iteration

• Sisal stands for Streams and Iteration in a
Single Assignment Language

• Defined in 1983, revised and frozen in 1985
• Original collaborators were LLNL, Colorado

State U, University of Manchester, and DEC
• Used for research at many other institutions,

including Stanford University
• Language design strongly influenced by

dataflow computation model

COMP 211, Spring
2010 10

Sisal Objectives
• to define a general-purpose functional language
• to define a language independent intermediate form

for dataflow graphs
• to develop optimization techniques for high

performance parallel applicative computing
• to develop a microtasking environment that supports

dataflow on conventional computer systems
• to achieve execution performance comparable to

imperative languages
• to validate the functional style of programming for

large-scale scientific applications

COMP 211, Spring
2010 11

Some Simple Sisal
Programs

% Hello world!
define main
function main(returns array[character])
 “hello world”
end function

% Simple arrays
define main
function main(A: array[integer] returns integer, array[integer])
 for element in A % parallel loop with independent iterations
 sqr := element * element
 returns
 value of sum sqr % reduce operation
 array of sqr % array comprehension, like vector-build
 end for
end function

Sequential iteration with
for-initial loop expressions

• Not all loops are implicitly data parallel
• Sisal supports an iterative form that supports the

idea of “loop carried dependencies”
• The loop body is allowed to reference both the

“new” and the “old” value of a definition
(variable)

• An separate body defines the initial values

Example #1: Iterated
Function
Composition

for initial % Initializer body is like the zeroth iteration
 i := 0;
 accum := 0;
while i < n repeat
 i := old i + 1; % Note the use of “old” to denote previous value
 accum := f(old accum);
returns
 value of accum
end for

Scheme equivalent:
(local
 ((define (g i accum)
 (cond [(i < n) (g (+ i 1) (f accum))] [else accum])))
 (g 0 0))

Example #2: 3-point
stencil
w/ Array Replace
Operation

for initial
 A := some_value(); % This is the zeroth “iteration”
 i := array_liml(A); % Lower bound of array A’s indices
while i < array_limh(A) repeat
 i := old i + 1;
 A := old A[i: (old A[i-1] + old A[i] + old A[i+1]) / 3.0];
returns
 value of A
end for

• Array replace operation --- A[i : X] returns a new array A’ identical to A,
except that element I is replaced by X

• Functional alternative to A[i] = X; in Java or C
• Semantically, A’ is a copy of A, but implementations try to make their best
effort to eliminate as many copies as possible.

COMP 211, Spring
2010 16

Announcements
• Midterm to be distributed on Friday

(Feb 19th)

	Vectors and Iteration
	Outline
	A First Look at Vectors (Section 29.3)
	Vector Operations (contd)
	Simple example: sum-of-3
	Binary Search on a Sorted Vector of Numbers
	Execution Time Complexity
	Vectors vs. lists
	Iteration
	Sisal: Example of a Functional Language with Iteration
	Sisal Objectives
	Some Simple Sisal Programs
	Sequential iteration with for-initial loop expressions
	Example #1: Iterated Function Composition
	Example #2: 3-point stencil w/ Array Replace Operation
	Announcements

