
 1

Adapting Our Design Recipe to Java

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211, Spring 2011

2

if and Other Statements
• Java is a statement based language rather than an

expression language.
• if statements are used to express explicit conditional

control in most OO languages including Java. Note: if
statements are used much less frequently in well-
written OO code than they are in functional or
procedural code.

An if statement has the following syntax:
 if (test) statement
 else statement

• What other forms of statements have we used
implicitly up to this point?

• Variable definition: type var = expr;
• Return: return expr;

COMP 211, Spring 2011

3

Method Definition Revisited
class Entry {
 /* fields */
 String name;
 String address;
 String phone;

 /** @return true iff name matches keyName.*/
 Entry match(String keyName) {
 if (keyName.equals(name)) return true;
 else return false;
 }
}

COMP 211, Spring 2011

4

Reprise: the Design Recipe
(Scheme)

How should I go about writing programs?
 Analyze problem, which includes:

 defining any data types (and templates) that are not primitive;
 determining what top-level (visible) functions must written.

 For each top-level function f to be written:
 State contract (type signature) and purpose of f.
 Give input-output examples for f written as tests
 Select and instantiate a template for the function body. Code

the function by filling in the template
 Run the tests and confirm that they succeed.

 Writing a function may require help functions. Add these
functions to the list of functions to be written. Use local?
Perhaps.

COMP 211, Spring 2011

5

The Design Recipe for Java
How should I go about writing programs?
 Analyze problem, which includes:

 defining any classes C for data types that are not primitive;
 determining what visible methods should appear in each class.
 Write Javadoc contracts (purpose statements in HTDP terminology) for these

methods
 For each visible method m in each class C:

 Write the header (type signature) and contract (purpose) for m.
• Create a test class for C (or the set of tightly coupled classes including C) if it does

not already exist and write a test method for m that checks its behavior on
representative inputs.

 Select and instantiate a template for the method body.
 Code the method by filling in the template.
• Writing a method m may require help methods. Add these methods to the class C

containing m. Use private? Perhaps, but it makes testing less convenient (but not
impossible).

 Run the tests and confirm that they succeed.
Note: recent versions of JUnit, the dominant testing framework for Java, allow tests to be

embedded in any class, but placing tests in separate classes has some significant
advantages (which can conceivably could be nullified by appropriate environment
support. Separate test classes makes targeted testing easy.

COMP 211, Spring 2011

6

 Java Data Types
• Primitive types: int long short byte double float char boolean
• Important primitive operations discussed in monograph and lab.

Written in conventional infix/prefix notatin following C conventions
• Object types

• Organized in a strict hierarchy with Object at the top.
• Every class C except Object has an immediate superclass, which is

the parent of C in the hierarchy.
• A descendant in the class hierarchy is called a subclass. B is a

subclass of A iff A is a superclass of B.
• Subclassing implies subtyping and vice-versa: if B is a subclass of A,

then B is a subtype of A. If class B is a subtype of class A, then B is a
subclass of A

• An object o is an instance of only one class but belongs to a
hierarchy of types.

• Each subclass C inherits (includes) all of the members of its
superclass. Declared members of C augment the inherited members
with one exception: if C declares a method m defined in the
superclass, new definition overrides old.

COMP 211, Spring 2011

7

 OO style
OO languages are designed to support
writing programs in which dynamic dispatch
is the principal control mechanism. Dynamic
dispatch refers to the fact that in a method
invocation o.m(), the method code executed
depends on the class of m. Recall that the
method m is conceptually part of the object o.
This idea is astonishingly powerful.
The essence of OO design is representing
data and computations in a form that
leverages dynamic dispatch.

COMP 211, Spring 2011

8

Union Pattern
• The union pattern is used to represent different forms

of related data with some common behavior.
• The pattern consists of an abstract class A together

with a collection of variant subclasses B1, ..., BN
extending A. An abstract class cannot be
instantiated using new. Note: if A is concrete then it
is not the union of B1, ..., BN because A has additional
members that are instances of A

• The collection of classes A, B1, ..., BN is called a union
hierarchy and A is called the root class of the
hierarchy.

• The common behavior is codified by a set of methods
in A, which may be abstract Each such method m
has an associated contract that that the
implementation in each variant class must obey.

COMP 211, Spring 2011

9

Class Diagram of Union Pattern

…

COMP 211, Spring 2011

10

Defining a Method on a Union

…

abstract <type> m(<params>);

<type> m(<params>) {
 <body 1>
}

<type> m(<params>) {
 <body N>
}

<type> m(<params>) {
 <body 1>
}

COMP 211, Spring 2011

11

 City Directory Example
• Assume that we want to design the data

for an online city phone book. In contrast
to our DeptDirectory example, such a
directory will contain several different
kinds of listings: businesses, residences,
and government agencies.

• The entry data for such a directory is
represented by using the union pattern to
identify the common behavior among the
various kinds of listings.

COMP 211, Spring 2011

12

Definition of CityEntry
A CityEntry is either:
• a ResidentialEntry(name, address, phone)
• a BusinessEntry(name, address, phone, city, state)
• a GovernmentEntry(name, address, phone, city, state,

government)

Examples:

ResidentialEntry("John Doe","3310 Underwood", "713-664-
8809")

BusinessEntry("ToysRUs","2101 Old Spanish Trail",
"713-664-1234","Houston", "TX")

GovernmentEntry("Federal Drug Administration",
"800-666-9000", "Washington", "DC", "Federal")

COMP 211, Spring 2010 13

 Class Diagram of CityEntry Union

COMP 211, Spring 2011

14

Crude Code for CityEntry

abstract class CityEntry { }

class BusinessEntry extends CityEntry {
 String name, address, phone, city, state;
}

class GovernmentEntry extends CityEntry {
 String name, address, phone, city, state, government;
}

class ResidentialEntry extends CityEntry {
 String name, address, phone;
}

COMP 211, Spring 2011

15

Defining Methods on Unions

• Assume that we want to define a method on a
union. The method will typically require a
separate implementation for each variant
(subclass) of the union. But each
implementation will satisfy the same
(description of behavior).

• In Java, the method must not only be defined
in each variant of the union, it must be
declared as abstract in the root class of the
union hierarchy. Otherwise, Java will not allow
the method to be invoked on objects of the
union type.

COMP 211, Spring 2011

16

Defined Method for CityEntry

• Let's illustrate the definition of a plausible method for
CityEntry :

abstract class CityEntry {

 /** Returns true if key is a prefix of name. */
 abstract boolean nameStartsWith(String key);

}

COMP 211, Spring 2011

17

Expanded Code for CityEntry

abstract class CityEntry {
 /** Returns true if key is a prefix of name. */
 abstract boolean nameStartsWith(String key);
}

class BusinessEntry extends CityEntry {
 String name, address, phone, city, state;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}
class GovernmentEntry extends CityEntry {
 String name, address, phone, city, state, government;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}
class ResidentialEntry extends CityEntry {
 String name, address, phone;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}

COMP 211, Spring 2011

18

Member Hoisting
• In a union hierarchy, the same code may

be repeated in every variant.
• A cardinal rule of software engineering is

never duplicate code. We can
eliminate code duplication in a union
hierarchy by hoisting duplicated code
(code that is invariant within the union)
into the abstract class at the route of the
hierarchy.

COMP 211, Spring 2011

19

Revised Code for CityEntry

abstract class CityEntry {
 /* common fields */
 String name, address, phone;

 /** Returns true if key is a prefix of name. */
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}

class BusinessEntry extends CityEntry {
 String city, state;
}
class GovernmentEntry extends CityEntry {
 String city, state, government;
}
class ResidentialEntry extends CityEntry { }

Usage Unchanged By Refactoring

CityEntry be = new BusinessEntry("ToysRUs", "2101 Old Spanish Trail",
 "713-664-1234","Houston", "TX");

CityEntry ge = new GovernmentEntry("Federal Drug Administration",
 "800-666-9000", "Washington", "DC", "Federal");

CityEntry re = new ResidentialEntry("John Doe", "3310 Underwood",
 "713-664-8809");

boolean b = be.nameStartsWith("Toys"); // true

boolean g = ge.nameStartsWith("Drug"); // false

boolean r = re.nameStartsWith("J"); // true

20

COMP 211, Spring 2011

21

For Next Class
• Exams and Optional Homework due

Wednesday after break
• Reading: OO Design Notes, Ch 1.1 -

1.4.1.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

