
 1

Accepting Reality: Full Java

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

 COMP 211, Spring 2011

2

What are Language Levels Hiding?

• In principle, nothing…
Java could have supported a notion of immutable classes
with essentially the same semantics as the DrJava
Functional Level. Scala appears to do this in “variant”
classes (concrete classes in an immutable composite)

• But Java is what it is …
• Transforming DrJava IL code to full Java code:

• Explicit constructors
• Explicit accessors
• Explicit overriding of equals
• Explicit overriding of hashCode()
• Explicit overriding of toString()

 COMP 211, Spring 2011

3

Explicit Constructors
• A constructor definition has the form:
 <ClassName>(var1, ..., varn) {
 <optional supercall on superclass constructor>
 <code body that initializes instance fields of class>
 }

• All fields not initialized in explicit constructors are set to the default value for
their respective type: 0 for all primitive number/char types, false for
boolean and null for all object (reference) types.

• Multiple constructors are permissible (static overloading).
• If no explicit constructors are provided, Java automatically generates a

default 0-ary constructor with an empty body.
• A superclass call has the form

 super(arg1, ..., argm);
where the arguments in the superclass call match the signature (parameter
declarations) of one the superclass constructors. If a supercall does not
appear as the first statement in a constructor, Java automatically generates a
superclass call on a 0-ary constructor (which may cause a compiler error).

 COMP 211, Spring 2011

4

Explicit Accessors
• An accessor definition is an ordinary instance

method definition of the form:
<accessorName>() { return <fieldName>; }

• The choice of <accessorName> is arbitrary. I
recommend using the corresponding
<fieldName>. Another common convention is
get<fieldName>.

• Instance fields should never be public.
• Multiple constructors are allowed (static

overloading).
• Recall: if no explicit constructors are provided,

Java automatically generates a default 0-ary
constructor with an empty body.

 COMP 211, Spring 2011

5

Explicit Overriding of equals
• The equals method, which has signature,
 public boolean equals(Object other);
is inherited in any program-defined class from its superclass. In
Object, equals means object identity (same allocation using new. This
default is almost never the proper definition for an immutable class,
but it is usually the right definition for a mutable class.

• In the Java programming culture, the following rule is very widely
taught: always override hashCode, which has signature:
 public int hashCode();
when you override equals. Their meanings purportedly must preserve
the following invariant:
 a.equals(b) → a.hashCode() == b.hashCode()
This rule is compelling for immutable data but it makes no sense for
mutable data. We will discuss this issue in more detail later in the
course.

 COMP 211, Spring 2011

6

 Explicit Overriding of equals cont.
• How should we write code to override equals an immutable class C

with fields f, g, h? For the complete answer, look at the .java files
generated by the DrJava language levels facility. A satisfactory
answer in some contexts is the following:

 public boolean equals(Object other) {
 C o = (C) other;
 return f.equals(other.f) &&
 g.equals(other.g) && h.equals(other.h);

• Note: if a field is of primitive type, the proper comparison operator is
infix == .

• What is potentially wrong with this definition? What happens if we
extend class C?

• What is fundamentally wrong with using the == operator instead of
equals on object types? Not algebraic (mathematical) equality.

 COMP 211, Spring 2011

7

 Explicit Overriding of hashCode

• For immutable classes, the preceding invariant
linking equals and hashCode is important
because hash tables will break if the invariant is
violated.

• We will study hash tables later in the course.
• We defer discussing how to properly override
hashCode until then.

 COMP 211, Spring 2011

8

 Explicit Overriding of toString
• The default definition of toString, which has

signature
 public String toString();

is awful: <className>@<hashCode>.
• Why is toString important? This

representation is used anytime that an object
is printed, e.g. in many testing contexts.

 COMP 211, Spring 2011

9

For Next Class

• Homework for next Monday is posted on the wiki. It
consists of doing HW6 (optional) in Java. We have provided
you with a purely functional Scheme solution that you must
translate to Java using stub code that we have provided.

• For this assignment, the functional language level is your
friend.

• If any aspect of Java puzzles you (which is likely!), please
ask a question directly of a course staff member or by
sending mail to comp211.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

