

1

Functional Abstraction
and Polymorphism

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211, Spring 2010

2

Abstracting Designs
• “The elimination of repetitions is the most

important step in the (program) editing
process” – Textbook

• The software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

• Repeated code should be avoided at almost all
costs. Why? Revisions involved repeated code
are almost impossible to get right.

• Abstractions help us avoid this problem.
• Abstractions affect how we think about writing

software (Stephen).

COMP 211, Spring 2010

3

The Need for Abstractions
;; Type contract

;; contains-doll? : los -> boolean

;; Purpose: (contains-doll? alos) determines if alos

;; contains the symbol 'doll

(define (contains-doll? alos)

 (cond

 [(empty? alos) false]

 [else (or (equal? (first alos) 'doll)
 (contains-doll? (rest alos)))]))

COMP 211, Spring 2010

4

The Need for Abstractions
;; Type contract

;; contains-car? : los -> boolean

;; Purpose: (contains-car? alos) determines if alos

;; contains the symbol 'car

(define (contains-car? alos)

 (cond

 [(empty? alos) false]

 [else (or (equal? (first alos) 'car)

 (contains-car? (rest alos)))]))

COMP 211, Spring 2010

5

Creating Abstractions
How can we write one function that replaces

• contains-doll?
• contains-car?
• contains-pizza?
• contains-comp210?

How can we subsume the following functions as well
• contains-17: list-of-number -> boolean
• contains-true: list-of-boolean -> boolean

COMP 211, Spring 2010

6

Creating Abstractions cont.
;; contains? : symbol los -> boolean
;; Purpose: (contains? s alos) determines whether alos
;; contains the symbol s
(define (contains? s alos)
 (cond
 [(empty? alos) false]
 [else (or (equal? (first alos) s)
 (contains? s (rest alos)))]))

What do we need to change to produce a function with type
 alpha list-of-alpha -> boolean

that generalizes this one? Only our documentation! (and perhaps
changing the name s to a and alos to aloa).
What changes would have been necessary if we had used symbol=?
instead of equal?

COMP 211, Spring 2010

7

Abstracted Version
;; Type contract
;; contains? : alpha list-of-alpha -> boolean
;; Purpose: (contains? a aloa) determines
;; whether aloa contains the element a of type alpha.
(define (contains? a aloa)
 (cond
 [(empty? aloa) false]
 [else (or (equal? (first aloa) a)
 (contains? a (rest aloa)))]))

Note: in Scheme libraries, contains? is called member?.
contains? accommodates variant behavior regarding which element
value is searched by making that element value a parameter. Both
contains-doll? and contains-car? inappropriately fix this value.

COMP 211, Spring 2010

8

Challenge
Can we associate a more general parametric
type with contains? than
 alpha list-of-alpha -> boolean
Is it useful in Scheme in practice?

COMP 211, Spring 2010

9

Using Abstractions
How do we use contains?

 (contains? 'doll (list ...))
 (contains? 'car (list …))
 (contains? 17 (list ...))

How can we better define contains-doll?,
contains-car?, contains-17?

 (define (contains-doll? alos) (contains? 'doll alos))
 (define (contains-car? alos) (contains? 'car alos))
 (define (contains-car? alos) (contains? 'car alos))

This idea is called reuse. Let’s run with it!

COMP 211, Spring 2010

10

A more complex example
;; Type contract:

;; below : lon number -> lon

;; Purpose: (below alon n) returns the list containing
;; the numbers in alon less than or equal to n

;; Code:

(define (below alon n)

 (cond [(empty? alon) empty]

 [else

 (cond [(<= (first alon) t)

 (cons (first alon)

 (below (rest alon) t))]

 [else (below (rest alon) t)])]))

COMP 211, Spring 2010

11

A more complex example
;; above : lon number -> lon

;; Purpose: (above alon n) returns the list of the

;; numbers in alon that are greater than n

(define (above alon n)

 (cond [(empty? alon) empty]

 [else

 (cond [(> (first alon) n)

 (cons (first alon)

 (above (rest alon) n))]

 [else (above (rest alon) n)])]))

COMP 211, Spring 2010

12

Creating Abstractions II
How can we write one function that

replaces
• below
• above
• equal
• same-sign-as
• … ?

COMP 211, Spring 2010

13

Creating Abstractions II cont.
;; Type contract
;; filter1 : relOp lon number -> lon
;; Purpose: (filter1 test alon n) returns the list of the numbers m
;; in alon such (test m n) is true
(define (filter1 test alon n)
 (cond [(empty? alon) empty]
 [else
 (cond [(test (first alon) n)
 (cons (first alon)
 (filter1 test (rest alon) n))]
 [else (filter1 test (rest alon) n)])]))

What did we do? Use a function as an argument!
relOp abbreviates relational operator. Requires the
Intermediate language level.

COMP 211, Spring 2010

14

Using Abstractions II
How do we denote (express) function values? In three different

ways. We will use the simplest one for now: write the name of
a defined function (primitive, library, or program-defined):

 (filter1 <= (list ...) 17))
 (filter1 > (list ...) 17))

How can we define functions below and above without code
duplication?

 (define (below alon t) (filter1 <= alon t))
 (define (above alon t) (filter1 > alon t))

Both functions will work just as before!

COMP 211, Spring 2010

15

Repetition in Types
Repetition also happens in type definitions.

A lon is one of:
• empty
• (cons n alon),

 where n is a number and alon is a lon.

A los is one of:
• empty

• (cons s alos),
 where s is a symbol and alos is a los.

COMP 211, Spring 2010

16

Abstracting Types

In FP, called parametric polymorphism
In OOP, called genericity (generic types)

A list-of-alpha is one of:
• empty
• (cons a aloa),
 where a is an alpha and aloa is a list-of-alpha.

A variable at the type level.

COMP 211, Spring 2010

17

Abstracting Types

Important! list-of-alpha is NOT list-of-any

Type Example(s)

 list-of-number (list 1 2 3)

 list-of-symbol (list 'a 'b 'pizza)

 any (list 1 2 3)
 (list 'a 'b 'pizza)
 empty
 (list 1 'a +)

COMP 211, Spring 2010

18

Revisiting filter1

What is a more precise description of test’s type?

;; Type contract
;; filter1 : relOp list-of-number number ->
;; list-of-number
;; where relOp is (number number -> boolean)
;; Purpose: (filter1 r alon n) returns the list-of-
;; number m from alon such that (r m n) is true

COMP 211, Spring 2010

19

Revisiting filter1

Can we generalize the type of filter1?
;; filter1 :
;; (number number -> boolean) list-of-number number ->

;; list-of-number

What is special about number? Does filter1 rely on any of the
properties of number?

No. It could be any type alpha.

;; filter1 :

;; (alpha alpha -> boolean) list-of-alpha alpha ->

;; list-of-alpha

COMP 211, Spring 2010

20

A better form of filtering?
Claim: filter1 is unnecessarily complex and specialized.
Compare it with the following function (which is part of the
Scheme library).
;; filter: (alpha -> boolean) list-of-alpha ->]
;; list-of-alpha
;; Purpose: (filter p aloa) returns the list of
;; elements in aloa that satisfy the predicate p.

Note that p is unary, which means that we must pass matching
unary functions as arguments. This convention is inconvenient
in the absence of a new linguistic mechanism called lambda-
notation which is introduced in Lecture 9. This mechanism is
available in the “Intermediate student with lambda” language.

COMP 211, Spring 2010

21

Final thoughts
• Function abstraction adds expressiveness to the programming

language
• Type abstraction (polymorphism) does the same for type annotations
• They work well together, e.g. OCAML, Haskell.
• In OO languages, integration is less clean in “generic” Java and C#.

Opportunity for improvement in new OO languages. Scala?
• Programming will continue to get “easier” as we add abstraction

mechanisms to our languages.

COMP 211, Spring 2010

22

For Next Class

• Slides for earlier lectures have been cleaned up.
Check them out.

• Review hand evaluation rule for local
• Work on HW3 (which includes a real challenge problem).
• Reading:
 Chs. 19-22: Linguistic Abstraction,

 Functions as values
 Chs. 21-22: Abstracting designs
 and first class functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

