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Abstracting Designs
• “The elimination of repetitions is the most 

important step in the (program) editing 
process” – Textbook

• The software engineering term for revising a 
program to make it better or accommodate an 
extension: refactoring.

• Repeated code should be avoided at almost all 
costs.  Why?  Revisions involved repeated code 
are almost impossible to get right.

• Abstractions help us avoid this problem.
• Abstractions affect how we think about writing 

software (Stephen).
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The Need for Abstractions
;; Type contract

;;   contains-doll? : los  ->  boolean

;; Purpose: (contains-doll? alos) determines if alos

;;   contains the symbol 'doll 

(define (contains-doll? alos) 

  (cond 

    [(empty? alos) false] 

    [else (or (equal? (first alos) 'doll)
            (contains-doll? (rest alos)))]))
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The Need for Abstractions
;; Type contract

;;   contains-car? : los  ->  boolean 

;; Purpose: (contains-car? alos) determines if alos

;; contains the symbol 'car 

(define (contains-car? alos) 

  (cond 

    [(empty? alos) false] 

    [else (or (equal? (first alos) 'car) 

              (contains-car? (rest alos)))])) 
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Creating Abstractions
How can we write one function that replaces

• contains-doll?
• contains-car?
• contains-pizza?
• contains-comp210?

How can we subsume the following functions as well
• contains-17: list-of-number -> boolean
• contains-true: list-of-boolean -> boolean
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Creating Abstractions cont.
;; contains? : symbol los  ->  boolean
;; Purpose: (contains? s alos) determines whether alos
;; contains the symbol s
(define (contains? s alos) 
  (cond 
    [(empty? alos) false] 
    [else (or (equal? (first alos) s)
              (contains? s (rest alos)))]))

What do we need to change to produce a function with type
 alpha list-of-alpha -> boolean 

that generalizes this one?  Only our documentation! (and perhaps 
changing the name s to a and alos to aloa).
What changes would have been necessary if we had used symbol=?
instead of equal?



COMP 211, Spring 2010
 

7

Abstracted Version
;; Type contract
;;   contains? : alpha list-of-alpha  ->  boolean
;; Purpose: (contains? a aloa) determines
;; whether aloa contains the element a of type alpha.
(define (contains? a aloa) 
  (cond 
    [(empty? aloa) false] 
    [else (or (equal? (first aloa) a)
              (contains? a (rest aloa)))]))

Note: in Scheme libraries, contains? is called member?.
contains? accommodates variant behavior regarding which element 
value is searched by making that element value a parameter.  Both
contains-doll? and contains-car? inappropriately fix this value.



COMP 211, Spring 2010
 

8

Challenge
Can we associate a more general parametric 
type with contains? than 
  alpha list-of-alpha  ->  boolean
Is it useful in Scheme in practice?
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Using Abstractions
How do we use contains?

  (contains? 'doll (list ...))
  (contains? 'car  (list …))
  (contains? 17 (list ...))

How can we better define contains-doll?,
contains-car?, contains-17?

  
  (define (contains-doll? alos) (contains? 'doll alos))
  (define (contains-car? alos) (contains? 'car alos))
  (define (contains-car? alos) (contains? 'car alos))

This idea is called reuse. Let’s run with it!
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A more complex example
;; Type contract: 

;;   below : lon number  ->  lon

;; Purpose: (below alon n) returns the list containing
;; the numbers in alon less than or equal to n 

;; Code:

(define (below alon n) 

  (cond [(empty? alon) empty] 

        [else

          (cond [(<= (first alon) t) 

                 (cons (first alon)

                       (below (rest alon) t))]     

                [else (below (rest alon) t)])]))
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A more complex example
;; above : lon number  ->  lon

;; Purpose: (above alon n) returns the list of the

;;   numbers in alon that are greater than n 

(define (above alon n) 

  (cond [(empty? alon) empty] 

        [else

          (cond [(> (first alon) n) 

                 (cons (first alon)

                       (above (rest alon) n))]    

                [else (above (rest alon) n)])]))
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Creating Abstractions II
How can we write one function that

replaces
• below
• above
• equal
• same-sign-as
• … ?
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Creating Abstractions II cont.
;; Type contract
;;   filter1 : relOp lon number  ->  lon 
;; Purpose: (filter1 test alon n) returns the list of the numbers m
;;   in alon such (test m n) is true
(define (filter1 test alon n) 
  (cond [(empty? alon) empty] 
        [else
          (cond [(test (first alon) n) 
                 (cons (first alon)
                       (filter1 test (rest alon) n))]
                [else (filter1 test (rest alon) n)])]))

What did we do?  Use a function as an argument!
relOp abbreviates relational operator.  Requires the
Intermediate language level.
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Using Abstractions II
How do we denote (express) function values?  In three different 

ways.  We will use the simplest one for now: write the name of 
a defined function (primitive, library, or program-defined):

  (filter1 <= (list ...) 17))
  (filter1 > (list ...) 17))

How can we define functions below and above without code 
duplication?

  (define (below alon t) (filter1 <= alon t))
  (define (above alon t) (filter1 > alon t))

Both functions will work just as before!
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Repetition in Types
Repetition also happens in type definitions.

A lon is one of:
•  empty
• (cons n alon),

 where n is a number and alon is a lon.

A los is one of:
• empty

• (cons s alos),
 where s is a symbol and alos is a los.
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Abstracting Types

In FP, called parametric polymorphism
In OOP, called genericity (generic types)

A list-of-alpha is one of:
•  empty
• (cons a aloa),
   where a is an alpha and aloa is a list-of-alpha.

A variable at the type level.
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Abstracting Types

Important!  list-of-alpha  is NOT list-of-any

Type Example(s)

 list-of-number  (list 1 2 3)

 list-of-symbol  (list 'a 'b 'pizza)

 any  (list 1 2 3)
 (list 'a 'b 'pizza)
 empty
 (list 1 'a +)
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Revisiting filter1

What is a more precise description of test’s type?

;; Type contract
;;   filter1 : relOp list-of-number number ->
;;     list-of-number
;; where relOp is (number number -> boolean)
;; Purpose: (filter1 r alon n) returns the list-of-
;;   number m from alon such that (r m n) is true
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Revisiting filter1

Can we generalize the type of filter1?
;; filter1 : 
;;   (number number -> boolean) list-of-number number -> 

;;   list-of-number 

What is special about number?  Does filter1 rely on any of the 
properties of number? 

No.  It could be any type alpha.

;; filter1 : 

;;   (alpha alpha -> boolean) list-of-alpha alpha -> 

;;   list-of-alpha
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A better form of filtering?
Claim: filter1 is unnecessarily complex and specialized.  
Compare it with the following function (which is part of the 
Scheme library).
;; filter: (alpha -> boolean) list-of-alpha -> ]
;;   list-of-alpha
;; Purpose: (filter p aloa) returns the list of
;; elements in aloa that satisfy the predicate p.

Note that p is unary, which means that we must pass matching 
unary functions as arguments.  This convention is inconvenient 
in the absence of a new linguistic mechanism called lambda-
notation which is introduced in Lecture 9.  This mechanism is 
available in the “Intermediate student with lambda” language.  
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Final thoughts
• Function abstraction adds expressiveness to the programming 

language
• Type abstraction (polymorphism) does the same for type annotations
• They work well together, e.g. OCAML, Haskell.
• In OO languages, integration is less clean in “generic” Java and C#.  

Opportunity for improvement in new OO languages.   Scala? 
• Programming will continue to get “easier” as we add abstraction 

mechanisms to our languages.
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For Next Class

• Slides for earlier lectures have been cleaned up. 
Check them out.

• Review hand evaluation rule for local
• Work on HW3 (which includes a real challenge problem).  
• Reading:
    Chs. 19-22:  Linguistic Abstraction,

                      Functions as values
    Chs. 21-22:  Abstracting designs 
                       and first class functions
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