
 1

Functions as Values

Corky Cartwright
Department of

Computer Science
Rice University

COMP 210, Fall 2010 2

Functional Abstraction
• A powerful tool

• Makes programs more concise
• Avoids redundancy
• Promotes “single point of control” (no code

duplication)
• Generally involves polymorphic contracts

(contracts containing type variables)
• What we cover today for lists applies to any

recursive (self-referential) type

COMP 210, Fall 2010 3

Look for the pattern

• One function:
; add1-each : (list-of number) -> (list-of number)

; adds one to each number in list

(define (add1-each l)

(cond [(empty? l) empty]

 [else

 (cons (add1 (first l))

 (add1-each (rest l)))]))

COMP 210, Fall 2010 4

Look for the pattern

Another function function:
; not-each : (listOf boolean) -> (listOf boolean)

; complements each boolean in the list

(define (not-each l)

 (cond [(empty? l) empty]

 [else (cons (not (first l))

 (not-each (rest l)))]))

COMP 210, Fall 2010 5

Codify the pattern

Abstracting with respect to add1, not, and the
element type in the lists:
; map : (X -> X), (listOf X) -> (listOf X)

; applies f to each element in l

(define (map f l)

 (cond [(empty? l) empty]

 [else (cons (f (first l))

 (map f (rest l)))]))

COMP 210, Fall 2010 6

Generalize the pattern

Do all occurrences of X in contract of map need to be
of the same type?

; map : (X -> Y) (list-of X) -> (list-of Y)
; (map f l) returns the list consisting of f
; applied to each element in l

(define (map f l)
 (cond [(empty? l) empty]
 [else (cons (f (first l))
 (map f (rest l)))]))

COMP 210, Fall 2010 7

Tip on Generalizing Types
• When we generalize, we only replace

• specific types (like number or symbol)
• by type variables (like X or Y)

• We never replace a type by the any type,
which actually means
number | boolean | list-of number |
list-of ... | number -> number | ...

• What goes wrong if we use any? We cannot
instantiate (bind) any as a custom type.

COMP 210, Fall 2010 8

Use the pattern
• map can be used with any unary function.
• (map not l)
• (map sqr l)
• (map length l)
• (map first l)
• (map symbol? l)
• Note: other recursive data types also

have maps!

COMP 210, Fall 2010 9

More about map
• Powerful tool for parallel computing!

• Has elegant properties (from
mathematics):

• (map f (map g l)) = (map (compose f g) l)
• Soon we will see how to define compose

• For fun: Checkout Google’s
“map/reduce”

COMP 210, Fall 2010 10

Better notation for function values

• Assume we want to square all of the elements in a list. How
can we do using map in a compact expression? We need
simple notation for denoting new functions without using
local. Alonzo Church invented such an notation in the
1930's called lambda-notation. In Church's scheme
 λx.M
denotes the function f defined by the equation
 f(x) = M.

• Lisp (the progenitor of Scheme) adopted this notation for new
functions. In particular,

 (lambda (x1 .. xn) E)

 denotes the function f defined by:
 (define (f x1 .. xn) E)

COMP 210, Fall 2010 11

Examples of lambda
;; square the elements in a list
(map (lambda (x) (* x x)) '(1 2 3 4))
;; compose: (Y -> Z) (X -> Y) -> (X -> Z)
(define (compose f g) (lambda (x) (f (g x))))
(map (compose add1 sub1) '(1 2 3 4))

Expressing lambda using local

 Straightforward, but ugly
(lambda (x1 ... Xn) M) =>

(local [(define (new-v x1 ... xn) M)] new-v)

COMP 210, Fall 2010 12

Templates as functions
• Recall the template for lists:
; (define (fn l)
; (cond
; [(empty? l) ...]
; [else ... (first l)
; ... (fn (rest l))
; …]))

• Can we construct a function foldr that takes
the "…" for empty? and the "…" for else as
parameters init and op? Yes. The op parameter
must be a function because it must process
(first l) and (fn (rest l)).

COMP 210, Fall 2010 13

Templates as functions
It would look just like this:
;; the contract is not obvious;
 (define (foldr op init l)
 (cond [(empty? l) init]
 [else
 (op (first l)
 (fold op init (rest l)))]))

Can we express all functions we’ve written
using foldr?

COMP 210, Fall 2010 14

map in terms of foldr

Can we write map in terms of foldr ? Yes.

map : (X->Y) (listOf X) -> (listOf Y)

(define (map f l)
(foldr (lambda (x l)(cons (f x) l))
 empty
 l))

COMP 210, Fall 2010 15

What is the type of foldr?
;; foldr: (X Y -> Y) Y (list-of X) -> Y
;; (foldr op init (list e1 ... en)) returns
;; (op e1 (... (op en init) ...)) which is
;; e1 op (... (en op init) ...)) in infix notation

Reasoning: in (foldr op init alox), alox is a list-of X,
where X is determined by the value of alox. op is applied to
(first l) and (foldr op init (rest l)), implying op has
inputs e and y of type X and Y.

COMP 210, Fall 2010 16

For Next Class
• Homework due next Friday. Don't

dally.

• Reading:
• Ch 21-22: Abstracting designs and

first class functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

