
Comp 211, Spring 2011
 1

Data Definitions and Templates

Prof. Robert “Corky” Cartwright
Dr. Stephen Wong

Rice University

Recap of Previous Lecture
• Primitive types and values

• numbers, booleans, symbols

• Variable definitions (constants), function
definitions

• Operators
• Arithmetic, relational, function application

• Rules for reducing programs
• Leftmost reduction

• Conditional Expressions

• Syntax Errors & Runtime Errors

Challenge Problem from
Previous Lecture

Can you think of a Scheme program that exibits different
behaviors with rightmost reduction instead of leftmost?

Consider the following example:

 (+ (/ 1 0) (+ 'A 12))

Error conditions can make reasoning about programs more
difficult than in naive mathematics e.g., you may not preserve
program behavior by replacing (* 0 (f x)) by 0. What if
evaluating (f x) generates an error?

Another example: given a non-terminating function
omega:

 (+ (/ 1 0) (omega 0))

COMP 211, Spring 2010

Comp 211, Spring 2011

4

Goals of this lecture
• Defining compound data (Scheme structs)
• Template for processing structs
• Union (mixed) data definitions
• Conditionals
• Template for processing union data.
• Inductive (self-referential) data definitions
• Template for processing inductive data

Comp 211, Spring 2011

5

Simple Data Definitions
• How do we define new forms of data in Scheme? For example, say we want to

write a program for the registrar that maintains a directory of courses that can be
searched …

• Informal rose description
“A complex number is a pair with a real part and an imaginary part , which are both

numbers ”
• Corresponding data definition in Scheme
;; Complex is a structure (make-Complex real imag)
;; where real and imag are numbers
;; NOTE: the type complex is primitive in Scheme so we
;; capitalize the name to avoid syntax errors
(define-struct Complex (real imag))
• A Scheme struct is a tuple tagged with the struct name
• Scheme processes this definition by creating the following operations:

• constructor: make-Complex,
• accessors: Complex-real, Complex-imag
• recognizer: Complex? (which checks the tag)

COMP 211, Spring 2010 6

Structs Can Represent
Compound Data

In the struct definition
 (define-struct Complex (real imag))
real and imag are called fields.

If a struct has more than one field, it is a compound form of
data because it more than one internal part. A struct with k
fields can be thought of as a box with k compartments where
each compartment is labeled with a distinct field name.

For example, the struct Complex has two fields
(compartments) called real and imag.

COMP 211, Spring 2010 7

Operations on Structures
Recall that the following operations are automatically

generated from the define-struct declaration for
Complex

• constructor: make-Complex
• accessors: Complex-real, Complex-imag
• recognizer: Complex?

Sample reductions for these field accessors and
structure recognizers

 (Complex-imag (make-Complex 1 2)) => 2
 (Complex? (make-Complex 3 4)) => true

COMP 211, Spring 2010 8

Structures Are Values
• In a program, the structure returned by a constructor is a value and

its parts are values.
• Inside a structure, the parts must be values. The application of a

struct constructor like make-Complex to some argument
expressions evaluates these arguments to produce values. At this
point, the struct application becomes a value because all of the parts
in its compartments are values.

• For example:
(make-Complex 0 (+ 2 2)) is a constructor application--not a

 value because the argument expression (+ 2 2) is not a value.
(make-Complex 0 (+ 2 2)) => (make-Complex 0 4)
(make-Complex 0 4) is a value. Why?
(make-Complex x y) is not a value. Why?

COMP 211, Spring 2010 9

Evaluation Rules for Structures
Given the data definition
 (define-struct Complex (real imag))

Scheme supports the following reduction rules:

(Complex-real (make-Complex Val1 Val2)) => Val1
(Complex-imag (make-Complex Val1 Val2)) => Val2
(Complex? (make-Complex Val1 Val2)) => true
(Complex? Val3) => false

 where Val1 Val2 are Scheme values and Val3 is not

 of the form (make-Complex V1 V2)

Comp 211, Spring 2011

10

The Design Recipe
How should I go about writing programs?
• Analyze problem and define any requisite data types
• State the type contract and purpose for function that

solves the problem
• Give examples of function use and result
• Select and instantiate a template for the function body
• Write the code for the function.
• Test the code, and confirm that tests succeeded

 The order of the steps of the recipe is important. In
DrScheme, steps 3 and 6 can be collapsed because the
examples can be presented as calls on check-expect.
DrScheme does not evaluate these tests until the end of
the program text.

Comp 211, Spring 2011

11

Template for Defined Data Type
• We start from the data definition. Example:
;; A Complex is a structure (make-Complex real imag)
;; where real and imag are numbers
(define-struct Complex (real imag))

• General template for any function processing an argument
of type Complex

 ;; (define (f c)
 ;; ... (Complex-real c) ...
 ;; ... (Complex-imag c) ...)

• Type contracts for some possible functions on Complex
 ;; mag : Complex -> number
 ;; 0? : Complex -> bool
 ;; conj: Complex -> Complex

Comp 211, Spring 2011

12

Example: write conj function

Assume that we have already defined the Complex type include a
template for functions that process inputs of type Complex.

;; Type contract
;; conj: Complex -> Complex

;; Purpose: (conj c) conjugates the complex number c, i.e.,
;; (conj (make-Complex a b)) returns (make-Complex a (- b))

;; Examples:
(check-expect (conj (make-Complex 0 0)) (make-Complex 0 0))
(check-expect (conj (make-Complex 0 1)) (make-Complex 0 -1))
(check-expect (conj (make-Complex 0 -1)) (make-Complex 0 1))
(check-expect (conj (make-Complex 1 -1)) (make-Complex 1 1))
(check-expect (conj (make-Complex -1 1)) (make-Complex -1 -1))

Comp 211, Spring 2011

13

Data Type → Template →
Template Instantiation → Code

Let's follow the recipe for writing conj
 ;; Type contract:
 ;; ... <as before>

Instantiation of Complex template for conj
 ;; Template instantiation
;; (define (conj c)
;; ... (Complex-real c) ...
;; ... (Complex-imag c) ...)

This template instantiation is trivial but more complex examples are not. It helps us
write the code
 ;; Code:
 (define (conj c)
 (make-Complex (Complex-real c) (- (Complex-imag c)))

• Sophisticated types -> sophisticated templates …
helping us write correct, sophisticated code

Comp 211, Spring 2011

14

Union (Mixed) Data Definitions
How can we define data types that include more than one kind of data?
• Use the notion of disjoint set union from mathematics
• Example:
 ;; A shape is either:
 ;; a square (make-square s) with side s,
 ;; an equilateral triangle (make-triangle s) with
 ;; side s, or
 ;; a circle (make-circle s) with diameter s,
 ;; where s is a number and square, triangle, and circle
 ;; are structs defined as follows.
 (define square (size))
 (define triangle (size))
 (define circle (size))
• This data definition can be abbreviated as follows:
 ;; shape ::= (make-square s) | (make-triangle s) |
 ;; (make-circle s)
 ;; where s is a number and square triange, and circle ...

Comp 211, Spring 2011

15

Template for Union (Mixed) Data
For the type defined on the previous slide, the general template is:
; (define (f ... ashape ...)
; (cond
; [(square? ashape) ... (square-size ashape) ...] ;; square case
; [(triangle? ashape) ... (triangle-size ashape) ...] ;; triangle case
; [(circle? ashape) ... (circle-size ashape) ...])) ;; circle case

Processing mixed data requires a conditional to direct control to the appropriate case code. Note
that cond is critical because it directs evaluation to the appropriate code, ignoring irrelevant
clauses.

The template for an arbitrary union (assuming each construction is unary)

;; mixed-type ::= (make-S1 field) | ... | (make-SN field)
and struct definitions for S1, ..., SN, the general template for processing data of this type is:
; (define (f ... amt ...)
; (cond
; [(S1? amt) ... (S1-field amt) ...] ;; S1 case
; ... ;; cases 2, ..., N-1
; [(SN? amt) ... (SN-field amt) ...])) ;; SN case)

Comp 211, Spring 2011

16

Inductive Data Definitions
How can we generate arbitrarily large data objects like lists?
• Use self-reference (induction/recursion) in typing fields of union

types. Such types are inductive/recursive types.
• Example:

;; A list-of-numbers is either
;; empty, or
;; (cons n lon)
;; where n is a number and lon is a list-of-numbers

• If we assume that empty is a built-in (primitive) constant (like
true), this definition can be implemented in Scheme by the struct
 (define-struct cons (first rest))

 where make- is elided from the constructor and cons- is elided from the
accessors.

Comp 211, Spring 2011

17

Inductive Data Definitions

The cons struct definition is built-in to Scheme; it is primitive.
 For the sake of brevity, the constructor is simply called
cons rather than make-cons and the accessors are
called first and rest rather than cons-first and
cons-rest. Note that a Scheme struct definition does
not stipulate the types of the fields of the structure. Hence,
the programmer is responsible for ensuring that cons is
used correctly. Moreover, a program can use cons in
multiple ways. In our dialects of Scheme, cons ensures
that its second argument is a list. (In the standard dialect,
first is called car and rest is called cdr for historical
reasons.)

Comp 211, Spring 2011

18

Template for Inductive Data
Type

;; (define (f ... alon ...)
;; (cond
;; [(empty? alon) ...] ;; empty case
;; [(cons? alon) ... (first alon) ... ;; cons case
;; ... (f ... (rest alon) ...) ...]))

• Processing inductive (self-referential) data requires recursion (self-
reference) in the computation.

• Recall the meaning of cond.
• This template for processing inductive data is an extension of the on Slide

8 for processing is a degenerate form of this template he previous slide
where there are multiple clauses (varieties) but no self-reference. The
template is identical except for absence of the recursive call.

Comp 211, Spring 2011

19

Extended Example: Insertion Sort

• Problem: given a list-of-numbers,
sort it into ascending (non-
decreasing) order.

• The solution that we will develop is
the sample solution in the Scheme
HW Guide.

Comp 211, Spring 2011

20

If Expressions
• Simplified notation for common conditional expressions.
• Form:
 (if <question> <result-1> <result-2>)

abbreviates:

(cond [<question> <result-1>]
 [else <result-2>])

Hence,

 (if true <result-1> <result-2>) => <result-1>
 (if false <result-1> <result-2>) => <result-2>

Comp 211, Spring 2011

21

Evaluation Rules for if

Rules for evaluating if expressions:
 (if true <expr1> <expr2>) => <expr1>
 (if false <expr1> <expr2>) => <expr2>
 (if V <expr1> <expr2>) =>
 error: question is not true or false

where V is a non-boolean value

Alternatively, we could expand an if expression
into the equivalent cond expression, but this
approach is clumsy.

Comp 211, Spring 2011

22

Epilog

• Reminder: work on HW01. Over the
weekend, you should be able to
complete the problems from Section 8.3
and make substantial progress on the
other programs. They all process lists.

• Next class: data-directed design using
other inductive types

Comp 211, Spring 2011

23

Example of a help function
; Type contract
; c-magnitude: Complex -> number
; Purpose: (c-magnitude c) computes the magnitude of the Complex number c, i.e.
; the L2 norm of (x,y) where c = (make-Complex x y)
; Examples
 (check-expect (c-magnitude (make-Complex 0 0)) 0)
 (check-expect (c-magnitude (make-Complex 3 4)) 5)
 (check-expect (c-magnitude (make-Complex 4 3)) 5)
; Template Instantiation
; (define (c-magnitude c) ... (Complex-real c) ... (Complex-imag c) ...)
; Code
(define (c-magnitude c) (2norm (Complex-real c) (Complex-imag c))
 ; Type contract
 ; 2norm: number number -> number
 ; Purpose: (2norm x y) returns the L2 norm of the vector (x,y), i.e.
 ; (sqrt (+ (* x x) (* y y)))
 ; Examples:
 (check-expect (2norm 0 0) 0)
 (check-expect (2norm 3 4) 5)
 (check-expect (2norm 4 3) 5)
 ; Template instantiation: trivial
 ; Code:
 (define (2norm x y) (sqrt (+ (* x x) (* y y))))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

