
1

 Graphical User Interfaces

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

Acknowledgments
•  “GUI programming” slides, U. Virginia

•  www.cs.virginia.edu/javaprogramdesign/slides/5.0/gui.ppt

•  UTEP course, Advanced Object-Oriented
Programming, Fall 2009
•  www.cs.utep.edu/cheon/cs3331/notes/gui.ppt

COMP 211, Spring 2010 2

COMP 211, Spring 2010 3

Human Computer Interaction

•  Original computer interfaces
•  Sequences of numbers/characters:

 punch cards
 paper tape
 console switches and lights
 line printers
 magnetic tape
 typewriter terminals (teletypes)

•  Original interactive interfaces were based on sequential streams of
characters

•  Well suited to “console-based programming” which focuses on
sequences of text input and output
 Unix shell (bash)
 Windows command line

COMP 211, Spring 2010 4

Text processing template in
Console-based programming

while (! input.endOfFile) {
 read input;
 process input;
}

Sometimes end-of-file is handled as an
exception:

while (true) {
 try {
 read input;
 process input;
 }
 catch(EOFException e)
{ break; }

}

COMP 211, Spring 2010 5

Graphical interaction

•  Labeled buttons
•  Text boxes for character input
•  Mouse actions for selection, cutting, pasting,

tracking/drawing
•  What is the programmatic interface for graphical

interaction (i.e., what does the program receiving
graphical input see)?

 A sequence of events
•  What are events?

GUI-based programming

7

Event Handling

•  Mechanism to write control code
•  Composed of:

•  Event
•  Event source
•  Event listener (or handler)

8

Event Handling (Cont.)
•  Event

•  A way for GUI components to communicate
with the rest of application

•  Implemented as instances of event classes
(e.g., ActionEvent)

•  Event source
•  Components generating events
•  Examples: buttons, check boxes, dialog

boxes, mouse canvases, etc.

9

Event Handling (Cont.)
•  Event listener (or handler)

•  Objects that receives and processes events
•  Must implement an appropriate listener

interface
•  Must inform the source its interest in handling

a certain type of events (by registering)
•  May listen to several sources and different

types of events

COMP 211, Spring 2010 10

What are Events?

•  In an OO language, they are objects describing
graphical inputs.

•  A GUI (graphical user interface) library defines and
supports the event system.

•  The nitty gritty systems level code supporting the
event library is based on interrupt-handling in the
operating system (Comp 221, Comp 421)

•  From the perspective of high-level language
programming, events are are simply the elements
of a much richer input stream.

•  Very close connection between text processing
and event processing

COMP 211, Spring 2010 11

 Event Processing Template
•  while (true) {
 get next event;
 process event;
}

•  Processing event may terminate application. The
event may be “close this application”; code simply
performs any necessary clean-up and breaks.

•  This event processing template is performed in a
single dedicated event dispatch thread

COMP 211, Spring 2010 12

 Simple GUI Threading
•  How do GUI events get recognized and processed?
•  A GUI system requires a dedicated thread that performs the

event loop we showed earlier:
 while (true) {
 get next event;
 process event;
 }

•  How do we avoid perils of multi-threading? The event thread is
started by the GUI library when the GUI is activated. Prior to
that time, no event handling thread exists.

•  In the Model-View-Controller pattern, the controller usually dies
immediately after activating the GUI so there is never more than
one thread executing in the program (unless the GUI code introduces
new threads)!

COMP 211, Spring 2010 13

The Model View Controller pattern
for Graphical User Interfaces
(Section 3.1.1 of EOOPD notes)

•  Three components
•  Model (core application with no external interface)
•  View (one or more graphical frames that interact with the user)
•  Controller (“main” program that constructs model and view, and

links them together)

Model

Controller View

COMP 211, Spring 2010 14

 MVC startup sequence
•  On startup, the controller (which in sophisticated uses of MVC

should be an object) runs.
•  The controller creates the model (which should be structured as an

object) and the GUI (called the “view”) which is also organized as
an object (e.g. a JFrame)
•  The GUI includes an event-handling thread which is sometimes

referred to as the “GUI thread” or “event thread”.
•  The controller links the view to the model by attaching listeners

(commands) to GUI elements (buttons, etc) that are run when that
GUI element is activated. The listener code performs some action
on the model. The model is passive; it does not talk to the GUI.

•  In simple uses of the MVC pattern, the controller activates the GUI
and immediately terminates.

COMP 211, Spring 2010 15

 Motivation for MVC

•  We partition GUI applications using the MVC pattern so
that new views can potentially be created without changing
the logic (model) of the underlying application.

•  This is a specific example of the general design concept
called de-coupling: partition an application into
independent components that interact only through
explicitly declared interfaces.

•  In the Laundry program, we collapsed the model and view
into a single program unit for the sake of brevity but we lost
flexibility (changing view components, multiple view
components) as a result.

Example of Model with
Multiple Views

COMP 211, Spring 2010 16

gui.ppt

change notification
request & modification views

model

COMP 211, Spring 2010 17

Click Counter Example
(Sections 3.1.2 – 3.1.4)

•  Counter is initialized to 0
•  Possible actions

•  INC --- increment (active when value < MAX)
•  DEC --- decrement (active when value > 0)
•  ZERO --- reset (active when value > 0)

init() method in Controller Class: note
use of anonymous inner classes …

COMP 211, Spring 2010 18

counter = new ClickCounter();
view = new ClickCounterView(this); view.setMinimumState();
view.setValueDisplay(counter.toString());

view.addIncListener(new ActionListener(){
 public void actionPerformed(ActionEvent event) {
 if (counter.isAtMaximum()) return;
 if (counter.isAtMinimum()) view.setCountingState();
 counter.inc(); view.setValueDisplay(counter.toString());

 if (counter.isAtMaximum()) view.setMaximumState();
 }

 });
view.addDecListener(new ActionListener(){

 public void actionPerformed(ActionEvent event) {

 if (counter.isAtMinimum()) return;
 if (counter.isAtMaximum()) view.setCountingState();
 counter.dec(); view.setValueDisplay(counter.toString());
 if (counter.isAtMinimum()) view.setMinimumState();
 }

 });
view.addResetListener(new ActionListener(){

 public void actionPerformed(ActionEvent event) {
 counter.reset(); view.setMinimumState();
 }

 });

19

… which are more robust than use of
naming conventions

Event Listener Adapter

ActionEvent ActionListener
ComponentEvent ComponentListener ComponentAdapter
FocusEvent FocusListener FocusAdapter
KeyEvent KeyListener KeyAdapter
MouseEvent MouseListener MouseAdapter
 MouseMotionListener MouseMotionAdapter
WindowEvent WindowListener WindowAdapter
ItemEvent ItemListener
TextEvent TextListener
…

20

Example of using naming convention instead
of anonymous inner class (Don’t do this!)

public class Util {
 public static ComponentListener
 createComponentListener(int width, int height) {
 return new MyComponentListener(width, height);
 }

 private static class MyComponentListener extends ComponentAdapter {
 private int width, height;
 public MyComponentListener(int w, int h) { width = w; height = h; }
 public void componentResized(ComponentEvent e) {
 Component c = e.getComponent();
 if (c.getWidth() < width || c.getHeight() < height) {
 c.setSize(Math.max(width, c.getWidth()),
 Math.max(height, c.getHeight()));
 }
 }
 } // MyComponentListener
}

Parallelism and Concurrency
Challenges in GUI’s
•  Problem 1: GUI can become unresponsive if an event takes a

long time to process
•  Solution: execute time-consuming part of event handler in a

separate (background) thread, but this raises the issue of thread
interference (race conditions) within the GUI.

•  Problem 2: Interference (race conditions) between main thread
and GUI’s event dispatch thread

•  Solution: terminate main thread (the controller) after starting
GUI.

•  Problem 3: GUI framework does not show improved
performance on multicore processors

•  Solution: build a multithreaded GUI framework (challenging
problem because of potential thread interference!)

COMP 211, Spring 2010 21

Example of long-running task with user
feedback in GUI
(3 levels of anonymous inner classes!)

COMP 211, Spring 2010
22

private void longRunningTaskWithFeedback() {

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 button.setEnabled(false);

 label.setText("busy");

 new Thread(new Runnable() {

 public void run() {

 try { /* Do big computation */ }

 finally {

 GuiExecutor.instance().execute(

 new Runnable() {

 public void run() {

 button.setEnabled(true);

 label.setText("idle");

 }}); // Runnable for GuiExecutor

 }}}).start(); // Runnable for new Thread

 }}); // ActionListener

} // Source: http://www.javaconcurrencyinpractice.com/listings/ListenerExamples.java

Note: GuiExecutor is available as open source code from the above site, but is NOT part of the Java Concurrent
utilities library.

Parallel Programs vs.
Concurrent Programs

•  Both terms are often used interchangeably, but there is an
informal and useful distinction …

•  A parallel program is one for which there is a “naturally
equivalent” sequential program
•  Motivation for parallelism is to obtain improved performance on

parallel processor

•  A concurrent program is one which deals with “intrinsically
distributed” entities
•  Motivation for parallelism/concurrency comes from application

domain, e.g., asynchronous GUI threads, an airline reservation
system.

COMP 211, Spring 2010 23

Confusing distinction when both kinds of
programs are implemented in same language

•  Same language constructs (e.g.,
threads, locks) used in both cases for
very different purposes

•  Concurrent programs need these
capabilities even when computers are
single-core
•  Origin of a number of low-level

concurrency primitives in system software
and hardware

COMP 211, Spring 2010 24

COMP 211, Spring 2010 25

More Complex GUIs

•  In some cases the model must be aware of the
GUI, e.g., DrJava or a game playing program.

•  The model includes an object supporting interface
with limited GUI functionality. In some sense, this
GUI interface is part of the API of the model. The
model must include an operation (e.g., a
constructor or subsequent initializer method) that
takes an argument of GUI interface type.

•  The GUI interface should be developed as part of
the model and include only what the model needs.

