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 Functional Programming

• Functional programming in Java

• immutable data

• algebraic (inductive) data represented using the composite pattern

• functional methods defined using the interpreter pattern

• essentially the same design recipe as functional programming in Scheme

• classes with a single instance: singleton pattern

• functions as data represented by singleton classes with a single apply mehod

(really should be called the first-class function pattern)

• strategy/command pattern supports passing first-class functions to methods

• closures (with refs to method vars) can be passed as anonymous classes

• extending composite pattern adds hooks supports the visitor pattern

• visitors are first class functions with union pattern structure so inheritance is possible

• static methods are oblivious to class instances (not supported in LL)

• static final fields are program constants

• exceptions and exception-handling using catch
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The Design Recipe for Java

How should one go about writing programs?
• Analyze problem, which includes:

• defining any classes C for data types that are not primitive;  
• determining what visible methods should appear in each class.

• For each visible method m in each class C :
• Write the header and contract (HTDP: purpose) for m.
• Create a test class for C (or the set of tightly coupled classes 

including C if it does not already exist) and write a test method 
for m that checks it behavior on representative inputs. 

• Select and instantiate a template for the method body and 
primary argument (this).  Define auxiliary helper methods as 
needed, and add them to the class C containing m. 

• Code the method by filling in the template
• Run the tests and confirm that they succeed.
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 Functional (LL) Java Restrictions

• No mutation (re-assignment)  ESSENTIAL

• No loops (can't do much if no re-assignment)

• No synchronization  ESSENTIAL

• No visibility modifiers

• No explicit constructors

• Only exception to above is private constructor for singleton pattern

• No static methods 

• No overloading 

• Static final fields

• Only inner classes are anonymous classes

• Exceptions but no catch
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 Generalizing FP to Include State

Motivations

•
Modeling objects that change over time

•
Modeling naturally cyclic structures

•
Caching computed results (benign optimization of functional semantics; invisible to client)

–
Lazy evaluation (suspensions are replaced by values on demand; supports infinite streams)

–
Memoization (a table of suspensions mapping function inputs to outputs)

•
Efficient algorithms often use mutable state.

Characteristics

•
Mutable object fields

•
Mutable method variables

•
State pattern: an object's principal field is mutable with union/composite type; the 
possible states are the variants of the union/composite

•
OO style dictates the disciplined use of mutation

•
Never modify fields in other objects directly.

•
Support high level mutation via mutating methods.
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 Full Java

• Static methods

• methods can be overloaded

• constructors must be explicit, except for 0-ary constructor

• visibility must be specified explicitly

• generic classes, polymorphic methods

• equality must be defined explicitly (and hashcode overridden if class is 
immutable)

• accessors must be defined explicitly

• catch clauses

• mutation allowed

• loops

• Inner classes (static and dynamic)

• synchronization; wait/notify

• Static initialization blocks
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  Static Type Checking

• Compiler checks declared type information for 
consistency.

• Generally intuitive except for lack of covariant 
generic subtyping, List<String> ! <: List<Object>

• Important gotchas:
– Static types govern overloading
– Static types govern field selection.
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 Generics in a Nutshell

• A generic class/interface is a class/interface parameterized by one or more type 
variables T, U, …, e.g. List<T>

• Within a generic class, type variables can (almost) be used like conventional types.  

• Prohibitions: new T(), new T[()], … instanceof T, … instanceof Foo<T>, 
generic exception classes.

• Warnings (type safety is lost) (T)  … , (Foo<T>) ...

• Outside a generic class, clients always refer to instantiations of the class, e.g. 
List<Integer>, List<E> where E is any type formed from contants and type 
variables in scope.

• Inside the scope of a generic class, the type variables of all enclosing classes are in 
scope.

• Note: a static inner class is NOT within the scope of the enclosing class.

• Generic subtyping is non-variant (invariant): C<S> <: (is a subtype of) C<T>
Iff  S = T. But it respects erased (ignoring parameterization) class subtyping: A<S> 
<: B<T> Iff  S = T and A <: B
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  Common Algorithms and Data Structures

•
Generally imperative (probably too imperative) because they evolved 
in the context of RAM instruction sets and higher level language 
supporting obvious abstractions of patterns of machine instructions.

•
Important to recognize portions of algorithms that can be made 
functional without asymptotic performance loss.

•
Important forms of data: machine primitives, algebraic data types 
including lists, arrays, tables (finite sets, finite functions), first-class 
functions (!), first-class set formulations other than lists (advanced).

•
Sorting lists is critical (fastest technique for int keys: radix).

•
Fast table searching is critical.  Hashing is often the best solution.
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 Concurrency and Parallelism

• Concurrency and parallelism both involve the notion of independent computations 
(threads) that potentially run concurrently.

• In concurrent programming, these concurrent tasks are not directly related to one 
another but the often incidentally share data structures.

• Concurrency arises from:

– asynchronous tasks (computations) created by a GUI

– Multiple input agents (different GUI buttons, different remote computers), e.g an 
airline reservation system.  Creating applications for a network naturally forces 
them to support concurrency

– Improved performance is not the fundamental concern

• Parallelism involves dividing what is in principle a single computation into multiple tasks 
(threads) to improve performance.  The client of a parallel application does not know 
whether the computation is being performed using explicit parallelism or not.  (Note: 
computer hardware includes lots of internal parallelism to improve performance.)
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 GUI Programming

• GUI programming is the most common form of concurrency.  
• A simple GUI involves two threads but the do not access any shared data 

structures and their execution only overlaps incidentally.  
• Well-written GUI programs can typically be decomposed into three components 

and two or more (often varying as the program executes) threads. 
• The main thread (the thread that runs when the program is started) executes 

the component called the controller, which creates and initializes the other two 
components: the view, or the GUI interface, and the model, or the core 
application program, which in simple cases is not even aware that the GUI and 
controller exist.  The application supports a programming interface (API) which 
only knows/understands the values passed across that API.

• After creating and initializing the view and the model, the controller starts an 
event thread associated with the view (written as part of the GUI library) and 
immediately dies.  The only period when the two threads overlap is the interval 
between the main thread starting the GUI thread and dying.  And this overlap is 
utterly inconsequential because the main thread does not interact with the GUI 
during this period.
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 Canonical Simple GUI program

• Study the ClickCounter program in the course notes on OO 
Design.

• It follows the simple scenario described on the previous slide.
• Note that the key part of the code is the controller code that 

installs listeners linking the model and view so that the 
processing of view events performs appropriate operations on 
the model.

• Another potential example: the Laundry Program In HW10.
• BUT, I designed this program in the fall of 1996 when I was 

just learning OO design.  I did not look carefully at the design 
of the  program carefully again until this year because after 
1998 we limited it to the console interface. 

•  
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 Rethinking the Laundry Program

The driving loop for the program is the simulate function in the Student class.  If the 
input to the program is a simple text stream, then this design works well.  The 
simulate method repeatedly asks for Input and blocks if no input is available yet.

The input text processor (the surrogate GUI for the text version of the program) 
reads ASCII characters from the input stream and aggregates them into command 
objects.  The simulate method sees a stream of commands.

But a good GUI interface allows the user to stipulate in the middle of an 
event stream that input should be taken from a file, so the GUI has to 
accumulate input commands and buffer them delivering them to the 
simulator (the simulate method in the Student class) on demand.  
If the simulate operation simply executed a single command (passed to 
the simulate method) then the simulate method would be significantly 
simpler because it would only need to process a single command (using a 
case split on the command),
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 More Challenging Examples

• The best known solutions to many standard 
computational problems can be formulated as the 
memoization of naïve solutions.

• Memoized algorithms correspond to a problem solving 
technique called dynamic programming.

• Examples: 

– parsing CFGs (CYK algorithm), 

– optimizing the multiplication of a chain of matrices

– shortest path between two nodes in a graph, …

– many string algorithms

• Lots of information on the web on dynamic 
programming
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 Rethinking the Laundry Program• The driving loop for the program is the simulate function in the Student 
class.  If the input to the program is a simple text stream, then this design 
works well.  The simulate method repeatedly asks for Input and blocks 

• The input text processor (the surrogate GUI for the text version of the 
program) reads ASCII characters from the input stream and aggregates 
them into command objects.  The simulate method sees a stream of 
commands.

• But a good GUI interface allows the user to stipulate in the middle of an 
event stream that input should be taken from a file, so the GUI has to 
accumulate input commands and buffer them delivering them to the 
simulator (the simulate method in the Student class) on demand.  

• If the simulate operation simply executed a single command (passed to the 
simulate method) then the simulate method would be significantly simpler 
because it would only need to process a single command (using a case 
split on the command),
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For Next Class
• Exam II over OO material will be given at 

scheduled site on Friday, April 30.
• Parallel sudoku homework is due today at 

11:59pm. Enjoy. 



Anonymous Inner classes 
in Java (Lecture 31, slide 
9)

public void start(final double rate)
{

ActionListener adder = new
ActionListener()

          { // anonymous inner class that implements ActionListener interface
      public void actionPerformed(ActionEvent evt)
     {

double interest = balance * rate / 100;
balance += interest;

      }
           };
Timer t = new Timer(1000, adder);
t.start();

        . . .
}

• This is saying, construct a new object of a class that 
implements the ActionListener interface, where the 
one required method (actionPerformed) is defined 
inside the brackets.  
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Java’s Callable Interface 
(Lecture 31, slide 14)

• Introduced in J2SE 5.0 in java.util.concurrent 
package (remember to “import 
java.util.concurrent;”)

public interface Callable<V> {

     /**

      * Computes a result, or throws an exception.

      *

      * @return computed result

      * @throws Exception if unable to compute a result

      */

     V call( ) throws Exception;
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Task Decomposition using 
Callable (Lecture 31, slide 
15)

// HTML renderer before decomposition

   ImageData image1 = imageInfo.downloadImage(1);

   ImageData image2 = imageInfo.downloadImage(2);

   . . .

   renderImage(image1);

   renderImage(image2);

// HTML renderer after task decomposition

   Callable<ImageData> task1 = new Callable<ImageData>() {

     public ImageData call() {return imageInfo.downloadImage(1);}};

   Callable<ImageData> task2 = new Callable<ImageData>() {

     public ImageData call() {return imageInfo.downloadImage(2);}};

   . . .

   renderImage(task1.call());

   renderImage(task2.call());
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From Sequential to Parallel 
Task Decomposition
(Lecture 34, slide 18)

Key Observation:
If two functional tasks can be executed in any order, 
they can also be executed in parallel
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Schematic of a Dual-core 
Processor

Task A Task B



How can we express Task
Parallelism in Java?

Answer: there are many ways, but they all 
ultimately involve execution on Java threads

The Java main program starts as a single thread

The code executed by the main thread can create 
other threads

Either explicitly (as in the following slides); or 

Implicitly via library use:
AWT/Swing, Applets, RMI, image loading, 

Servlets, web services,  Executor usage 
(thread pools), …



Executing a Callable task 
in a parallel Java Thread
(Lecture 34, slide 20)
// 1. Create a callable closure (lambda)

Callable<ArrayList<Integer>> left_c = … 

// 2. Package the closure as a task

final FutureTask<ArrayList<Integer>> task_A = 

    new FutureTask<ArrayList<Integer>>(left_c);

// 3. Start executing the task in a parallel thread

new Thread(task_A).start();

// 4. Wait for task to complete, and get its result

left_s = task_A.get();
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Quicksort with Parallel Tasks
(Lectures 34 & 39)public static ArrayList<Integer> quickSort(ArrayList<Integer> a) {

     if (a.isEmpty()) return new ArrayList<Integer>();

     final ArrayList<Integer> left = new ArrayList<Integer>();

     final ArrayList<Integer> mid = new ArrayList<Integer>();  

     final ArrayList<Integer> right = new ArrayList<Integer>(); 

     int pivot = a.get(a.size()/2); // Use midpoint element as pivot

     for (Integer i : a)

         if ( i < pivot ) left.add(i); // Use element 0 as pivot

         else if ( i > pivot) right.add(i);

         else mid.add(i)

     // Now, left, mid, right contain the three partitions of 

     // array a with respect to pivot

     // Continue on next slide ...



Quicksort with Parallel Tasks 
(contd)
(Lectures 34 & 39)  FutureTask<ArrayList<Integer>> left_t = // Closure for recursive call

    new FutureTask<ArrayList<Integer>>(

      new Callable<ArrayList<Integer>>() {

        public ArrayList<Integer> call() { return quickSort(left); } } );

  FutureTask<ArrayList<Integer>> right_t = // Closure for recursive call

    new FutureTask<ArrayList<Integer>>(

      new Callable<ArrayList<Integer>>() {

        public ArrayList<Integer> call() { return quickSort(right); } } );

  // Execute each closure in a parallel thread

  new Thread(left_t).start(); new Thread(right_t).start();

  // Wait for result of FutureTask’s left_t and right_t 

  ArrayList<Integer> left_s = left_t.get(); // Sorted version of left

  ArrayList<Integer> right_s = right_t.get(); // Sorted version of right

  return left_s.addAll(mid).addAll(right_s);

} // quickSort 



Summary of Lecture 39
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• Trade-offs in Parallel Programming

• Overhead

• Memory

• Serialization

• Computation Graph, Total Work (T1), Critical Path 
Length (T∞)

• Lower bounds in Computating Graph
• TP  ≥ T1/P
• TP    ≥T∞

• Amdahl’s Law (for serial fraction, fS, and parallel 
fraction, fP)

• TP >= fS * T1  +   fP * T1 / P 



Life beyond COMP 211
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• Computer Science has a lot to offer

• Help solve major challenges facing the world

• Energy crisis, cancer prevention, globalization, 
…

• Work on intellectually stimulating problems

• Data mining, dynamics of social/financial 
networks, computational science, …

• Vast choice of career options 

• Animation, Design, Finance, Law, Medicine, 
Software, …

• Talk to your major advisor!
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