Trees
S]

Corky Cartwright
Stephen Wong
Department of Computer Science
Rice University

COMP 211, Spring 2010

k¢ Recap of Previous Lecture

mill
Data-directed design

- Start with data definition
« Specifies structure of data

* Derive function template from data definition
* Model for any function that can be performed on data
* Use generic name (e.g., £) for function

* Create template instantiation for a specific function
and primary argument

* Use specific name (e.qg., sort) for function

+ Define separate auxiliary functions for other arguments if
needed

* Develop code based on template instantiation

COMP 211, Spring 2010 2

kg . Today’s Goals

* Loose Ends
* Catching mistakes and raising errors
* and & or Ooperations

* Trees

* Significantly more expressive type

* “Lists with many tails”
 Examples:

* Family tree

* Binary search tree

COMP 211, Spring 2010

$ m||US|ng and & or

cheme and abbreviates a conditional and takes an arbitrary number
of arguments (our student dialects require at least 2)

(and argl arg2 ... argn) abbreviates

(cond [(not argl) false]

[(not arg2) false]

[else argn])
 Hence,
(and true true false (zero? (/ 2 0)) ..) => false
Called “short-circuit” or “non-strict” semantics for and
* What does or do? It is the dual of and.
(or argl arg2 ... argn) abbreviates

(cond [argl true]
[arg2 true]

iéise argn])

COMP 211, Spring 2010 4

;¢ , and & or cont.

mil W
* What are the reduction rules (laws) for and?
°* (and false ... argn) => false
° (and true arg2 ... argn) => (and arg2 ... argn)

° (and v) => v

* What are the reduction rules (laws) for or?

* (or true ... argn) => true
* (or false arg2 ... argn) => (or arg2 ... argn)
° (or v) => v

COMP 211, Spring 2010 >

h

¢ , Error Reporting

mill WU
To report an error in (a student dialect of) Scheme invoke:
(error msgqg)

where msqg is a string enclosed in quotation marks. In full Scheme,
error takes additional arguments. See Help Desk.

HTDP (our online book) describes an obsolete version of error.

Semantics: the entire computation is aborted and an error message
msqg iS printed.

Example:

(define (len aloa
(cond
[(empty? Aloa) 0]
[(cons? aloa) (addl (len (rest aloa)))]
[else (error "len: expects argument of type <list>")]))

COMP 211, Spring 2010 6

;¢ Frror Reporting (cont.)

L
Questions:

« Is error reporting a good idea.
* Should error behavior be documented?

 Answers to questions are surprising subtle and lacking
in consensus. In the case above, it is probably a good
idea but it is often not done because it clutters the code
and adds overhead. Moreover, the error is caught
anyway with a slightly less informative diagnostic. On
the other hand, DrScheme libraries do perform such

checks, partly because Scheme does not perform static
type checking.

* Error checking should not be included in a contract
(purpose) unless the client code can depend on it and

use it (by "catching" the error). We will cover error
catching in Java.

COMP 211, Spring 2010 7

;i Reductions for Errors

mill 1
* First, note how errors work for functions you already

know. In any context, erroneous primitive function
applications like (/ 1 0) abort the computation and
return an error at the top level:

(/ 1 0) = /: division by zero
This aborting behavior is unique among our rules.

* The error construct gives program text access to this
mechanism. In any context
(error “append: expects <list> as first argument") =>
append: expects <list> as first argument [at top level]

* Use errors only as required by the problem or recipe.

COMP 211, Spring 2010 8

Another Inductive Type: Trees

o Structures in Structures)
L

U.S. DEPARTMENT OF JUSTICE

 Labeled trees
- Organizational charts A“°’“e"lG‘°‘“""’“
* Decision trees Deputy

Attorney General

* Search trees [l
SOLICITOR A3 TR
GENERAL ATTORNEY
d l GEMERAL
and many more: I
OFFICE OF
CFFICE OF O O | PUBLIC
THE LEGAL POLICY AFRARE
SOLICITOR
GEMERAL
OFFICE OF CFFIGE OF
OFFICE OF COMMUNITY L B LEGISLATIVE jufled LEGAL FEDERAL — CFFICE OF HFCEOF
JUSTCE fufed CRIENTED RIGHTS e AFFARS COUNSEL BUREAUOF fefund T nereeron 1=
PROGRAME st OMSION ol WVESTIGATION oSy RESPONSBILITY
= OFFICE OF
E‘E‘ EXECUTIVE ENVIRONMENT CFFICE OF
GEFICE OF (INTER- DRUG OFFICE OF THE
o] wiFGRMATION AHTITROAT MDUATURAL GOVERNMENTAL ENFORCEMENT fufhun BUREAL OF el o o el
L AND PRIVAGY VSION ne AND PUBLIC LINSON | ADMINSTRATION ATTORNEY
FOREIGH EXECUTIVE UNITED UNITED
CFFIGE OF COMMUNITY JUSTIGE
CLAMS TAX, GFFICE FOR STATES STATES
e I T | sermievesr DISION i UNTED STATES [P] SHALS herrilll o o T
COMMISSION ATTORNEYS SERVICE COMMISSION
OFFICEON LS. NATIONAL EXECUTIVE MATIOHAL
Eg Eg VIOLENCE Sies e cEMTRAL oFFcEFor L] ORUG
AGAINST ... BUREAU WIMIGRATION INTELLIGENCE
WOMEN INTERPOL REVIEW CENTER
I-I I-I EUREALN: OFFICE OF THE PROFESSIONAL
1 5 E ooyl FEDERM RESPONSIBLITY
b DETENTION o
¥ TRUSTEE OFFICE

1a 13 o

. 818208

Approved by:

ALBERTO R.
Aftorney

COMP 211, Spring 2010 9

From Lists to Trees

|
L En
A

Example of a List Data Definition
; A list-of-symbols is
; empty, or
(cons s los)
; where s is a symbol and los is a list-of-symbols

A list has one embedded structure (rest)

COMP 211, Spring 2009 10

A ¢ [(Ancestor) Family Trees

mil U

Example of a Family Tree Data Definition

; A child is

; empty // Represents “unknown”
; (make-child n m £f) // Two self-references

; where n is a symbol, m is a child and f is a child

(define-struct child (name mother father))

A child has two embedded structures
(mother, father) which belong to type
child. Perhaps child is misnamed.

COMP 211, Spring 2010 11

¢ Tree Depth (in class ex.)

L En
mill WU

* Consider the following problem

* Given an ancestry tree, compute the
maximum number of generations for
which we know something about this
person.

* Contract (or “type”) is
° child -> natural

- Examples (next slide)

COMP 211, Spring 2010 12

Vi
i/ /,

siree Depth Examples

(define cat (make-child 'Cat empty empty))

(define tom (make-child 'Tom cat empty))

(define jane (make-child empty tom))

(define johnny (make-child 'Johnny empty empty))

(define ray (make-child 'Ray empty johnny))

(define sue (make-child 'Sue empty ray))
(define rob (make-child
(define bob (make-child

(check-expect
(check-expect
(check-expect
(check-expect
(check-expect
(check-expect
(check-expect
(check-expect

COMP 211, Spring 2010

(max-depth
(max-depth
(max-depth
(max-depth
(max-depth
(max-depth
(max-depth
(max-depth

'Rob empty sue))
'Bob jane rob))

cat) 1)
tom) 2)
jane) 3)
johnny) 1)
ray) 2)
sue) 3)
rob) 4)
bob) 5)

13

k$ gl ree Depth Template Instantiation

L

; Template Instantiation (trivial)
(define (max-depth c)
(cond
[(empty? ¢c) ...]
[else ...
(max-depth (child-mother c))
(max-depth (child-father c¢)) ...)))

COMP 211, Spring 2010 14

¢ Tree Depth Code

L En
mill WU

; Code
(define (max-depth c)

(cond
[(empty? c) O]
[else (addl
(max (max-depth (child-mother c))
(max-depth (child-father c)))]))

Examples can help in writing code. Work
through simple examples by hand.

COMP 211, Spring 2010 15

L$ goinary Trees and Binary Search Trees
w1

; A binary tree (BT) is either

; empty, or

; (make-node n 1 r)

; where n is a number, 1 and r are BTs.
(define-struct node (num left right))

; A binary search tree (BST) is a binary tree where
; the following invariants hold:

; 1. Numbers in 1 are less than or equal to n

; 2. Numbers in r are greater than n

COMP 211, Spring 2010 16

;\Q- Binary Search Trees

L
&2
Which binary tree satisfies the
. : : L
invariants of a binary search tree?
15 £
10 23
£3
LY
15 33
a7 21

COMP 211, Spring 2010

17

Example Family Tree

empty empty

L§-,||(variant of Figure 35 in textbook)

f

‘Carl
n m f
4_
‘Dave

COMP 211, Spring 2010

empty empty
_— —

m

f

m

‘Bettina

/

‘Dan

f

empty empty
—> —>
n m f
‘Fred
18

k¢ .Challenge Problem
mill WU

* Can you think of a Scheme
program that can create a cycle
among structures?

- n m f n m f
/ ‘JOhnl:{i}\\“ ‘v&\

n m f ??? n m f

‘Ray / ‘Tk
n m £ n m f

nA m f < o 0 £
‘Sue D - ‘Jane
\

COMP 211, Spring 2010 ROP ‘Bob 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

