
1 

Trees	



Corky Cartwright	


Vivek Sarkar	


Department of Computer Science	


Rice University	



COMP 211, Spring 2010 



Recap of Previous Lecture	


Data-directed design	


•  Start with data definition	



•  Specifies structure of data	



•  Derive function template from data definition	


•  Model for any function that can be performed on data	


•  Use generic name (e.g., f ) for function	



•  Create template instantiation for a specific function and 
primary argument	



•  Use specific name (e.g., big-class?) for function	


•  Define separate auxiliary functions for other arguments if needed	



•  Develop code based on template instantiation	


COMP 211, Spring 2010 2 



Example of Data-Directed Design	


•  Data definition	



;; A natural-number (n for short) is either 0, 	


;; or (add1 n), where n is a natural-number	



•  Function template	


;; f : natural-number -> ...  

;; (define (f ... n ...) 

;;   (cond [(zero? n) ...] 
;;         [(positive? n) ... 

;;          (f ... (sub1 n) ...)...])) 

COMP 211, Spring 2010 3 



Example of Data-Directed Design���
(contd)	



•  Template instantiation	


;; right-add : natnum, natnum -> natnum  
;; (define (right-add m n) 

;;  (cond [(zero? n) ...] 

;;        [(positive? n) ... 

;;         (right-add ... (sub1 n) ...)...])) 

•  Code	


(define (right-add m n) 

  (cond[(zero? n) m]  
  [(positive? n) (add1 (right-add m (sub1 n)))])) 

COMP 211, Spring 2010 4 



COMP 211, Spring 2010 5 

Today’s Goals	


•  Loose Ends	



•  Catching mistakes and raising errors	


•  and & or operations	



•  Trees	


•  Significantly more expressive type	


•  “Lists with many tails”	



•  Examples:	


•  Family tree	


•  Binary search tree	





COMP 211, Spring 2010 6 

Using and & or!
•  Scheme and abbreviates a conditional and takes an arbitrary 

number of arguments (our student dialects require at least 2)���
(and arg1 ... argn) abbreviates ���
(cond [(not arg1) false]  
      ...  
      [else argn])  
Hence,���
(and true true false true (zero? (/ 2 0)) ...)!
=> false!

•  This behavior is called “short-circuit”  or “non-strict”  semantics for and 	


•  What does or do?   It is the "dual" of  and.���

(or arg1 ... argn) abbreviates ���
(cond [arg1 true]  
      ...  
      [else argn])!



COMP 211, Spring 2010 7 

and & or cont.!
•  What are the reduction rules (laws) for and?	



•  (and false ... argn) => false!
•  (and true arg2 ... argn) => (and arg2 ... argn)!
•  (and v) => v!

•  What are the reduction rules (laws) for or?	


•  (or true ... argn) => true!
•  (or false arg2 ... argn) => (or arg2 ... argn)!
•  (or v) => v!



COMP 211, Spring 2010 8 

Error Reporting	


•   To report an error in Scheme invoke:���

  (error msg v1 … vn)  
where msg is a string enclosed in quotation marks and v1, …, vn are 
arbitrary Scheme values.���
Semantics: the entire computation is aborted and an error message 
consisting of msg v1 … vn is printed.	



•  Example:���
(define (len aloa)  
  (cond [(empty? aloa) 0]  
        [(cons? aloa) (add1 (len (rest aloa)))]  
        [else (error "length: expected <list>; given" !

!                     aloa)])) 	





Error Reporting (contd)	


•  Questions: 	



•  Is error reporting a good idea.	


•  Should error behavior be documented? 	



•  Answers to questions are surprising subtle and lacking in consensus.  
In the case above, it is probably a good idea but it is often not done 
because it clutters the code and the error is caught anyway with a 
slightly less informative diagnostic.  (DrScheme libraries do perform 
such checks.	



•  Error checking should not be included in a contract (purpose) unless 
the client code can depend on it and use it (by "catching" the error). 
We will cover error catching in Java.	



COMP 211, Spring 2010 9 



COMP 211, Spring 2010 10 

Reductions for Errors	


•  First, note how errors work for functions you already 

know.  In any context, erroneous primitive function 
applications like (/ 1 0) abort the computation and return 
an error at the top level:!

  (/ 1 0) => /: divide by zero  
at top level.  This is unique among our rules.!

•  The error construct gives program text access to this 
mechanism. In any context	



  (error 'append "first argument not a list") => !
  append: first argument not a list  [at top level]"
•  Use errors only as required by the problem or recipe	





Another Inductive Type: Trees ���
(Structures in Structures)	



COMP 211, Spring 2010 11 

•  Labeled trees	


•  Organizational charts	


•  Decision trees	


•  Search trees	


and many more!	





COMP 211, Spring 2009 12 

From Lists to Trees	


Example of a List Data Definition	


; A list-of-symbols is!
;      empty, or!
;      (cons s los)!
; where s is a symbol and los is a list-of-symbols!

A list has one embedded structure (rest)	





COMP 211, Spring 2010 13 

Family Trees	


Example of a Family Tree Data Definition	


; A child is!
;     empty                  // Represents “unknown”!
;     (make-child n m f)     // Two self-references	


; where n is a symbol, m is a child and f is a child  

(define-struct child (name mother father))!

A child has two embedded structures (mother, father)	





Example Family Tree���
(variant of Figure 35 in textbook)	



COMP 211, Spring 2010 14 

‘Gustav 

‘Eva 
n m f 

n m f 

‘Fred 

n m f 
‘Carl 

n m f 

‘Bettina 

n m f 

‘Dave 

n m f 

empty empty empty empty 

empty empty 



COMP 211, Spring 2010 15 

Tree Depth (in class ex.)	


•  Consider the following problem	



•  “Given an ancestry tree, compute the maximum 
number of generations for which we know 
something about this person.”	



•  Contract (or “type”) is 	


•  child -> natural !

•  Examples (next slide)	





COMP 211, Spring 2010 16 

Tree Depth Examples	


(define cat (make-child 'Cat empty empty))!
(define tom (make-child 'Tom cat empty))!
(define jane (make-child empty tom))!
(define johnny (make-child 'Johnny empty empty))!
(define ray (make-child 'Ray empty johnny))!
(define sue (make-child 'Sue empty ray))!
(define rob (make-child 'Rob empty sue))!
(define bob (make-child 'Bob jane rob))!

;(max-depth cat) = 1!
;(max-depth tom) = 2!
;(max-depth jane) = 3!
;(max-depth johnny) = 1!
;(max-depth ray) = 2!
;(max-depth sue) = 3!
;(max-depth rob) = 4!
;(max-depth bob) = 5!



COMP 211, Spring 2010 17 

Tree Depth Template Instantiation	


 max-depth : child -> natural!
 (define (max-depth c)!
  (cond !
    [(empty? c) ...]!
    [else ...!
      ... (max-depth (child-mother c)) ...!
      ... (max-depth (child-father c)) ...)))!



COMP 211, Spring 2010 18 

Tree Depth Code	


 max-depth : child -> natural!
 (define (max-depth c)!
  (cond !
    [(empty? c) 0]!
    [else (add1!
     (max (max-depth (child-mother c))!
          (max-depth (child-father c)))]))!

Examples can help in writing code.	





•  Can you think of a Scheme program that 
can create a cycle among structures?	



Challenge Problem	



COMP 211, Spring 2010 19 

‘Tom 

‘Bob 

n m f 

n m f 

‘Johnny 

n m f 

‘Cat 

n m f 

‘Ray 

n m f 

‘Jane 

n m f 

‘Sue 

n m f 

‘Rob 

n m f 

??? 



COMP 211, Spring 2010 20 

Binary Search Trees	



;  A binary-search-tree (BST) is either!
;     empty, or!
;     (make-node n l r)!
;  where n is a number, l and r are BTs.!
;  Invariants:!
;      1. Numbers in l are less than or equal to n!
;      2. Numbers in r are greater than n!
(define-struct node (num left right))	





COMP 211, Spring 2010 21 

Binary Search Trees	



Which tree satisfies the invariants of 
a binary search tree?	




