COMP 322: Fundamentals of Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 24: Map Reduce

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu
Acknowledgments for Today’s Lecture

- Lecture 24 handout
- Slides from MapReduce lecture in Stanford CS 345A course
- Slides from COMP 422 lecture on MapReduce
 - http://www.clear.rice.edu/comp422
Announcements

• HW5 submission deadline postponed to 5pm on Monday, March 21st
HW5: Review of Table 1 from Lecture 19

<table>
<thead>
<tr>
<th>j.u.c.atomic Class and Constructors</th>
<th>j.u.c.atomic Methods</th>
<th>Equivalent HJ isolated statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtomicInteger</td>
<td>int j = v.get();</td>
<td>int j; isolated j = v.val;</td>
</tr>
<tr>
<td></td>
<td>v.set(newVal);</td>
<td>isolated v.val = newVal;</td>
</tr>
<tr>
<td>AtomicInteger()</td>
<td>int j = v.getAndSet(newVal);</td>
<td>int j; isolated { j = v.val; v.val = newVal; }</td>
</tr>
<tr>
<td>// init = 0</td>
<td>int j = v.addAndGet(delta);</td>
<td>isolated { v.val += delta; j = v.val; }</td>
</tr>
<tr>
<td>AtomicInteger(init)</td>
<td>int j = v.getAndAdd(delta);</td>
<td>isolated { j = v.val; v.val += delta; }</td>
</tr>
<tr>
<td></td>
<td>boolean b =</td>
<td>boolean b;</td>
</tr>
<tr>
<td></td>
<td>v.compareAndSet</td>
<td>isolated</td>
</tr>
<tr>
<td></td>
<td>(expect,update);</td>
<td>if (v.val==expect) {v.val=update; b=true;}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>else b = false;</td>
</tr>
<tr>
<td>AtomicIntegerArray</td>
<td>int j = v.get(i);</td>
<td>int j; isolated j = v.arr[i];</td>
</tr>
<tr>
<td></td>
<td>v.set(i,newVal);</td>
<td>isolated v.arr[i] = newVal;</td>
</tr>
<tr>
<td>AtomicIntegerArray</td>
<td>int j = v.getAndSet(i,newVal);</td>
<td>int j; isolated { j = v.arr[i]; v.arr[i] = newVal; }</td>
</tr>
<tr>
<td>(length) // init = 0</td>
<td>int j = v.addAndGet(i,delta);</td>
<td>isolated { v.arr[i] += delta; j = v.arr[i]; }</td>
</tr>
<tr>
<td>AtomicIntegerArray</td>
<td>int j = v.getAndAdd(i,delta);</td>
<td>isolated { j = v.arr[i]; v.arr[i] += delta; }</td>
</tr>
<tr>
<td>(arr)</td>
<td>boolean b =</td>
<td>boolean b;</td>
</tr>
<tr>
<td></td>
<td>v.compareAndSet</td>
<td>isolated</td>
</tr>
<tr>
<td></td>
<td>(i,expect,update);</td>
<td>if (v.arr[i]==expect) {v.arr[i]=update; b=true;}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>else b = false;</td>
</tr>
</tbody>
</table>
HW5 Clarifications

• **Clarification 1:** You can ignore the possibility of queue overflow in class IQueue.

• **Clarification 2:** Remember to take AtomicInteger.get() operations into account along with compareAndSet() operations when considering serialization edges in Problem 3.

• **Clarification 3:** A do-while loop in Java executes the loop body at least once, and only exits the loop when the while condition is false.

• **Clarification 4:** Problem 1) asks for an expansion of the compareAndSet() calls in accordance with Table 1 of the Lecture 19 handout. The isolated statement should only enclose the compareAndSet computation and nothing more.
Recap: map and reduce (fold) functions in Scheme

- \((\text{map } f \ (\text{list } x_1 \ldots x_n)) = (\text{list } (f \ x_1)\ldots(f \ x_n))\)
 - \((\text{map } f \ L)\) takes two parameters as inputs, a unary function, \(f\), and a list, \(L\), and returns a new list obtained by applying \(f\) to each element in \(L\).
 - All applications of function \(f\) can be performed in parallel. If each application of \(f\) takes \(O(1)\) constant time, then \(\text{WORK} = O(n)\) and \(\text{CPL} = O(1)\).

- \((\text{foldr } g \ \text{base} \ (\text{list } x_1 \ldots x_n)) = (g \ x_1 \ldots(g \ x_n \ \text{base}))\)
 - \((\text{foldr } g \ \text{base} \ L)\) takes three parameters as inputs, a binary function, \(g\), a base (init) value, and a list, \(L\). It returns a right-associative reduced value obtained by applying \(g\) on elements of \(L\).
 - If we don't know anything about function \(g\), then we have to assume that it must be applied sequentially as shown above.
 - If \(g\) is associative, it can be computed using parallel reduction algorithms with \(\text{WORK} = O(n)\) and \(\text{CPL} = O(\log n)\).
 - For today's lecture, we will assume that all functions used for reduce operations are both associative and commutative.
Sets of Key-Value Pairs

- **Input set** is of the form \{(k_1, v_1), \ldots (k_n, v_n)\}, where \((k_i, v_i)\) consists of a key, \(k_i\), and a value, \(v_i\).
 - Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.

- Map function \(f\) generates sets of **intermediate key-value pairs**, \(f(k_i, v_i) = \{(k_1', v_1'), \ldots (k_m', v_m')\}\). The \(k_j'\) keys can be different from \(k_i\) key in the input of the map function.

- Assume that a **flatten** operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.

- **Reduce** operation groups together intermediate key-value pairs, \(\{(k', v_j')\}\) with the same \(k'\), and generates a reduced key-value pair, \((k', v'')\), for each such \(k'\), using reduce function \(g\).
MapReduce: The Map Step

Input set of key-value pairs

Flattened intermediate set of key-value pairs

MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

WordCount example (Listing 1)

1. Input: set of words
2. Output: set of (word, count) pairs
3. Algorithm:
4. a) For each input word \(W \), emit \((W, 1) \) as a key-value pair (map step).
5. b) Group together all key-value pairs with the same key (reduce step).
6. c) Perform a sum reduction on all values with the same key (reduce step).

- All map operations in step a) (line 4) can execute in parallel with only local data accesses
- Step b) (line 5) can involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
- Step c) (line 6) performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.
Motivation: Large Scale Data Processing

• Want to process terabytes of raw data
 —documents found by a web crawl
 —web request logs

• Produce various kinds of derived data
 —inverted indices
 - e.g. mapping from words to locations in documents
 —various representations of graph structure of documents
 —summaries of number of pages crawled per host
 —most frequent queries in a given day
 —...

• Input data is large

• Need to parallelize computation so it takes reasonable time
 —need hundreds/thousands of CPUs

• Need for fault tolerance
Example applications of MapReduce in Data Center Clusters (Table 1)

<table>
<thead>
<tr>
<th>Application</th>
<th>Map function</th>
<th>Reduce function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed grep</td>
<td>emit line if it matches pattern</td>
<td>no-op (copy intermediate data to output data)</td>
</tr>
<tr>
<td>URL access frequencies</td>
<td>emit (URL, 1) pairs from web logs</td>
<td>add counts for same URL, emit (URL, total-count) pairs</td>
</tr>
<tr>
<td>Reverse web-link graph</td>
<td>emit (target, source) pairs for each target link found in source page</td>
<td>concatenate source URLs for same target, emit (target, source-list) pairs</td>
</tr>
<tr>
<td>Distributed sort</td>
<td>emit (key, record) pairs</td>
<td>no-op (records will be grouped by key)</td>
</tr>
</tbody>
</table>
Overall schematic for MapReduce framework on a data center cluster

Input key*value pairs

Data store 1

map

Data store n

map

(key 1, values...)

(key 2, values...)

(key 3, values...)

(key 1, values...)

(key 2, values...)

(key 3, values...)

== Barrier ==: Aggregates intermediate values by output key

key 1, intermediate values

reduce

final key 1 values

key 2, intermediate values

reduce

final key 2 values

key 3, intermediate values

reduce

final key 3 values
Execution Overview

Input files
Map phase
Intermediate files (on local disks)
Reduce phase
Output files

User Program
Master
worker
worker
worker
split 0
split 1
split 2
split 3
split 4

(1) fork
(1) fork
(1) fork
(2) assign map
(2) assign reduce
(3) read
(4) local write
(5) remote read
(6) write
output file 0
output file 1
Execution Overview Details

1. Initiation — the MapReduce library splits input files into \(M \) pieces (typically 16-64 MB per piece), and starts up program on a cluster with 1 master and \(W \) workers.

2. Master assignment — the Master node assigns \(M \) map tasks and \(R \) reduce tasks to the workers. Typical values are \(M = 200,000 \) and \(R = 5,000 \) for \(W = 2,000 \).
 - The master attempts to assign tasks to workers that are located close to desired input data (locality management).

3. Map task — a worker assigned a map task parses key-value pairs from input data, invokes the map function on each pair, and produces intermediate key-value pairs.

4. Partition — the intermediate key-value pairs are partitioned into \(R \) regions for \(R \) reduce tasks.

5. Group — each worker uses Remote Procedure Calls (RPC) to read intermediate data from remote disks, after which it sorts its set of pairs by key.

6. Reduce — the worker iterates over sorted intermediate data, calls reduce, and appends output to final output file.

7. Completion — when all is complete, user program is notified.
#include "mapreduce/mapreduce.h"

int main(int argc, char** argv) {
 ParseCommandLineFlags(argc, argv);
 MapReduceSpecification spec;

 // Store list of input files into "spec"
 for (int i = 1; i < argc; i++) {
 MapReduceInput* input = spec.add_input();
 input->set_format("text");
 input->set_filepattern(argv[i]);
 input->set_mapper_class("WordCounter");
 }

 // Specify the output files:
 // /gfs/test/freq-00000-of-00100
 // /gfs/test/freq-00001-of-00100
 // ...
 MapReduceOutput* out = spec.output();
 out->set_filebase("/gfs/test/freq");
 out->set_num_tasks(100);
 out->set_format("text");
 out->set_reducer_class("Adder");

 // Optional: do partial sums within map tasks to save network bandwidth
 out->set_combiner_class("Adder");

 // Tuning parameters: use at most 2000 machines and 100 MB memory per task
 spec.set_machines(2000);
 spec.set_map_megabytes(100);
 spec.set_reduce_megabytes(100);

 // Now run it
 MapReduceResult result;
 if (!MapReduce(spec, &result)) abort();

 // Done: 'result' structure contains info about counters, time taken, number of machines used, etc.
 return 0;
}
Full “Word Count” Example: Map

```cpp
#include "mapreduce/mapreduce.h"

class WordCounter : public Mapper {
public:
    virtual void Map(const MapInput& input) {
        const string& text = input.value();
        const int n = text.size();
        for (int i = 0; i < n; ) {
            // Skip past leading whitespace
            while (((i < n) && isspace(text[i]))) i++;
            // Find word end
            int start = i;
            while (((i < n) && !isspace(text[i]))) i++;
            if (start < i) Emit(text.substr(start,i-start),"1");
        }
    }
}
REGISTER_MAPPER(WordCounter);
```
#include "mapreduce/mapreduce.h"

class Adder : public Reducer {
 virtual void Reduce(ReduceInput* input) {
 // Iterate over all entries with the
 // same key and add the values
 int64 value = 0;
 while (! input->done()) {
 value += StringToInt(input->value());
 input->NextValue();
 }
 // Emit sum for input->key()
 Emit(IntToString(value));
 }
};
REGISTER_REDUCER(Adder);