Acknowledgments for Today’s Lecture

• COMP 322 Lecture 3 handout
Computation Graphs for HJ Programs

• A Computation Graph (CG) is an abstract data structure that captures the dynamic execution of an HJ program

• The nodes in the CG are steps in the program's execution
 — A step is a sequential subcomputation of a task that contains no continuation points
 — When a worker starts executing a step, it can execute the entire step without interruption
 — Steps need not be maximal i.e., it is acceptable to split a step into smaller steps if so desired
Example HJ Program Decomposed into Non-Maximal Steps (v1 ... v23)

// Task T1
v1; v2;
finish {
 async {
 // Task T2
 v3;
 finish {
 async {
 // Task T3
 v4; v5; } // Task T3
 v6;
 async { v7; v8; } // Task T4
 v9;
 } // finish
 } // finish
 } // Task T2
 v10; v11;
}

// Task T2 (contd)
async { v12; v13;
 v14; } // Task T5
 v15;
} // end of task T2
 v16; v17; // back in Task T1
} // finish
v18; v19;
finish {
 async {
 // Task T6
 v20; v21; v22; }
 }
 v23;

Computation Graph Edges

- **CG edges represent ordering constraints**
- There are three kinds of CG edges of interest in an HJ program with finish & async operations:
 1. *Continue edges* define sequencing of steps within a task
 2. *Spawn edges* connect parent tasks to child async tasks
 3. *Join edges* connect async tasks to their Immediately Enclosing Finish (IEF) operations
Observation: Step v16 can potentially execute in parallel with steps v3 ... v15
Dependences in a Computation Graph

- Given edge \((A,B)\) in a CG, node \(B\) can only start execution after node \(A\) has completed.
- We say that node \(Y\) depends on node \(X\) if there is a path of directed edges from \(X\) to \(Y\) in the CG.
 - Also referred to as a “dependence from node \(X\) to node \(Y\)” or a “dependence from node \(Y\) on node \(X\)”
- Nodes \(X\) and \(Y\) can potentially execute in parallel if there is no dependence from \(X\) to \(Y\) or from \(Y\) to \(X\).
- Dependence is a transitive relation.
 - If \(B\) depends on \(A\) and \(C\) depends on \(B\), then \(C\) must depend on \(A\).
- All computation graphs must be acyclic.
 - It is not possible for a node to depend on itself.
- Computation graphs are examples of directed acyclic graphs (dags).
Complexity Measures for Computation Graphs

Define

- \(\text{time}(N) = \) execution time of node \(N \)
- \(\text{WORK}(G) = \) sum of \(\text{time}(N) \), for all nodes \(N \) in CG \(G \)
 - \(\text{WORK}(G) \) is the total amount of work to be performed in \(G \)
- \(\text{CPL}(G) = \) length of a longest path in CG \(G \), when adding up the execution times of all nodes in the path
 - Such paths are called critical paths
 - \(\text{CPL}(G) \) is the length of these paths (critical path length)
Example

• Assume time(N) = 1 for all nodes in this graph

\[\text{WORK}(G) = 18 \]
Example (contd)

- Assume $\text{time}(N) = 1$ for all nodes in this graph

$\text{CPL}(G) = 9$
Lower Bounds on Execution Time

• $t_P = $ execution time of computation graph on P processors

• Observations
 — $t_1 = WORK(G)$
 — $t_\infty = CPL(G)$

• Lower bounds
 — Capacity bound: $t_P \geq \frac{WORK(G)}{P}$
 — Critical path bound: $t_P \geq CPL(G)$

• Putting it together
 — $t_P \geq \max(\frac{WORK(G)}{P}, CPL(G))$
Theorem [Graham '66]. Any greedy scheduler achieves
\[t_p \leq \frac{\text{WORK}(G)}{P} + C\text{PL}(G). \]

Proof sketch.
\# complete steps \leq \frac{\text{WORK}(G)}{P}, since each complete step performs \(P \) work.
\# incomplete steps \leq C\text{PL}(G), since each incomplete step reduces the span of the unexecuted dag by 1.
\qed
Parallelism ("Ideal Speedup")

T_p depends on the schedule of computation graph nodes on the processors

⇒ Two different schedules can yield different values of T_p for the same P

For convenience, define \textit{parallelism} (or ideal speedup) as the ratio,
$\text{WORK}(G)/\text{CPL}(G) = \frac{T_1}{T_∞}$

Parallelism is independent of P, and only depends on the computation graph
HJ Abstract Performance Metrics

• Serial code sequence
 — Dynamic sequence of instructions with no parallel operations

• Calls to perf.addLocalOps()
 — *Programmer* inserts calls of the form, perf.addLocalOps(N), inside a step to indicate execution of N application-specific abstract operations e.g., floating-point ops, stencil ops, data structure ops, etc.
 — Multiple calls add to the execution time of the step

• -perf=true runtime option
 — If an HJ program is executed with this option, abstract metrics are printed at end of program execution with WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)