
Page 1

COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 35: Liveness and Progress
Guarantees for Parallel Programs

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 35 15 April 2011

COMP 322, Spring 2011 (V.Sarkar)	
2

Acknowledgments for Todayʼs Lecture"
•  Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
— Optional text for COMP 322
— Slides and code examples extracted from

http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914

•  “Synchronization and Concurrency for User-level Systems”,
William N. Scherer III, Ph.D. Defense, U. Rochester,
December 2005

•  “The Java Tutorials --- Concurrency”
— http://download.oracle.com/javase/tutorial/essential/concurrency

•  “Introduction to Synchronization”, Klara Nahrstedt, CS 241
Lecture 10, Spring 2007
— www.cs.uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt

Page 2

COMP 322, Spring 2011 (V.Sarkar)	
3

Announcements"
•  Homework 7 due by 5pm on Friday, April 22nd

— Send email to comp322-staff if you’re running into issues with
accessing SUG@R nodes, or anything else

COMP 322, Spring 2011 (V.Sarkar)	
4

Desirable Properties of Parallel Program
Executions"

•  Data-race freedom (Lecture 6)
•  Termination

•  But some applications are designed to be non-
terminating

•  Liveness = a program’s ability to make progress in a
timely manner

•  Different levels of liveness guarantees (from weaker
to stronger)
— Deadlock freedom
— Livelock freedom
— Starvation freedom
— Bounded wait

Page 3

COMP 322, Spring 2011 (V.Sarkar)	
5

Terminating Parallel Program Executions"
•  A parallel program execution is terminating if all sequential tasks in the

program terminate
•  Example of a program with a nonterminating execution
1.  p.x = false;
2.  finish {
3.  async { // S1
4.  boolean b = false; do { isolated b = p.x; } while (! b);
5.  }
6.  isolated p.x = true; // S2
7.  } // finish

•  Some executions of this program may be terminating, and some not
•  Cannot assume in general that statement S2 will ever get a chance to

execute if async S1 is nonterminating e.g., consider case when
program is run with one worker (-places 1:1)

COMP 322, Spring 2011 (V.Sarkar)	
6

Deadlock-Free Parallel Program Executions"
•  A parallel program execution is deadlock-free if no task’s execution

remains incomplete due to it being blocked awaiting some condition
•  Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();
 DataDrivenFuture right = new DataDrivenFuture();
 finish {
 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2
 }

•  In this case, Task1 and Task2 are in a deadlock cycle. There are
many mechanisms (e.g., locks) that can lead to deadlock cycles.
— No deadlock cycle possible with finish, isolated, phasers, and

async’s without await clauses
–  future async’s and phased async’s are fine

Page 4

COMP 322, Spring 2011 (V.Sarkar)	
7

Livelock-Free Parallel Program Executions"
•  A parallel program execution exhibits livelock if two or more tasks

repeat the same interactions without making any progress (special case
of nontermination)

•  Livelock example:
—  Source: http://stackoverflow.com/questions/1036364/good-example-of-livelock

// Thread 1
getLocks12(lock1, lock2) {
 lock1.lock();
 while (lock2.locked()) {
 // attempt to yield to other thread
 lock1.unlock(); wait(); lock1.lock();
 } lock2.lock();
}

•  Many well-intended approaches to avoid deadlock result in livelock
instead

•  A practical heuristic (but not a guarantee) for avoiding livelock is to
introduce randomization in distribution of requests

•  Any data-race-free HJ program without isolated is guaranteed to be
livelock-free (may be nonterminating in a single task, however)

// Thread 2
getLocks21(lock2, lock1) {
 lock2.lock();
 while (lock1.locked()) {
 // attempt to yield to other thread
 lock2.unlock(); wait(); lock2.lock();
 } lock1.lock();
}

COMP 322, Spring 2011 (V.Sarkar)	
8

Starvation-Free Parallel Program
Executions"

•  A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
— Starvation-freedom is sometimes referred to as “lock-out freedom”

•  Common source of starvation: adjustment of priorities
•  Classic “Priority Inversion” problem

— Thread A is at high priority, waiting for result or resource from
Thread C at low priority

— Thread B at intermediate priority is CPU-bound
— Thread C never runs, hence thread A never runs
— Fix: when a high priority thread waits for a low priority thread,

boost the priority of the low-priority thread

Page 5

COMP 322, Spring 2011 (V.Sarkar)	
9

Bounded Wait"
•  A parallel program execution exhibits bounded wait if each task

requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to
the resource after its request has been registered.

•  If bound = 0, then the program execution is fair

COMP 322, Spring 2011 (V.Sarkar)	
10

Progress Mutual Exclusion Bounded Wait

Oversimplifying Assumptions

Are there door
locks? No cutting in!

Well, Did you
see anybody

go in?

Page 6

COMP 322, Spring 2011 (V.Sarkar)	
11

•  Progress? •  Bounded Wait?

What's the difference?

COMP 322, Spring 2011 (V.Sarkar)	
12

•  Progress?
— If no process is
waiting for a
resource and several
processes are
requesting access to
the resource, then
access to the
resource cannot be
postponed
indefinitely

Page 7

COMP 322, Spring 2011 (V.Sarkar)	
13

•  Progress?
— If no process is
waiting in its critical
section and several
processes are trying
to get into their
critical section, then
entry to the critical
section cannot be
postponed
indefinitely

•  Bounded Wait?
— A process
requesting
access to a
resource should
only have to wait
for a bounded
number of other
processes to
access the
resource that
requested access
after it

COMP 322, Spring 2011 (V.Sarkar)	
14

Related Concepts"
•  A resource is said to be wait-free if it is starvation-free,

livelock-free, and deadlock-free
•  A resource is said to be lock-free if it is livelock-free and

deadlock-free
•  A resource is said to be obstruction-free if it is deadlock-free

