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Acknowledgments for Todayʼs Lecture"
•  Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008. 
— Optional text for COMP 322 
— Slides and code examples extracted from

http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914 

•  “Synchronization and Concurrency for User-level Systems”, 
William N. Scherer III, Ph.D. Defense, U. Rochester, 
December 2005 

•  “The Java Tutorials --- Concurrency” 
— http://download.oracle.com/javase/tutorial/essential/concurrency 

•  “Introduction to Synchronization”, Klara Nahrstedt, CS 241 
Lecture 10, Spring 2007 
— www.cs.uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt 
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Announcements"
•  Homework 7 due by 5pm on Friday, April 22nd 

— Send email to comp322-staff if you’re running into issues with 
accessing SUG@R nodes, or anything else 
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Desirable Properties of Parallel Program 
Executions"

•  Data-race freedom (Lecture 6) 
•  Termination 

•  But some applications are designed to be non-
terminating 

•  Liveness = a program’s ability to make progress in a 
timely manner 

•  Different levels of liveness guarantees (from weaker 
to stronger) 
— Deadlock freedom 
— Livelock freedom 
— Starvation freedom 
— Bounded wait 
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Terminating Parallel Program Executions"
•  A parallel program execution is terminating if all sequential tasks in the 

program terminate 
•  Example of a program with a nonterminating execution 
1.  p.x = false; 
2.  finish { 
3.    async { // S1 
4.       boolean b = false; do { isolated b = p.x; } while (! b); 
5.       } 
6.    isolated p.x = true; // S2 
7.  } // finish 

•  Some executions of this program may be terminating, and some not 
•  Cannot assume in general that statement S2 will ever get a chance to 

execute if async S1 is nonterminating e.g., consider case when 
program is run with one worker (-places 1:1) 
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Deadlock-Free Parallel Program Executions"
•  A parallel program execution is deadlock-free if no task’s execution 

remains incomplete due to it being blocked awaiting some condition 
•  Example of a program with a deadlocking execution 

 DataDrivenFuture left = new DataDrivenFuture(); 
 DataDrivenFuture right = new DataDrivenFuture(); 
 finish { 
   async await ( left ) right.put(rightBuilder()); // Task1 

     async await ( right ) left.put(leftBuilder()); // Task2 
 } 

•  In this case, Task1 and Task2 are in a deadlock cycle.  There are 
many mechanisms (e.g., locks) that can lead to deadlock cycles. 
— No deadlock cycle possible with finish, isolated, phasers, and 

async’s without await clauses 
–  future async’s and phased async’s are fine 
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Livelock-Free Parallel Program Executions"
•  A parallel program execution exhibits livelock if two or more tasks 

repeat the same interactions without making any progress (special case 
of nontermination) 

•  Livelock example: 
—  Source: http://stackoverflow.com/questions/1036364/good-example-of-livelock  

// Thread 1 
getLocks12(lock1, lock2) { 
  lock1.lock();   
  while (lock2.locked())  {     
    // attempt to yield to other thread     
    lock1.unlock(); wait(); lock1.lock();   
  }  lock2.lock(); 
} 

•  Many well-intended approaches to avoid deadlock result in livelock 
instead 

•  A practical heuristic (but not a guarantee) for avoiding livelock is to 
introduce randomization in distribution of requests 

•  Any data-race-free HJ program without isolated is guaranteed to be 
livelock-free (may be nonterminating in a single task, however) 

// Thread 2 
getLocks21(lock2, lock1) { 
  lock2.lock();   
  while (lock1.locked())  {     
    // attempt to yield to other thread     
    lock2.unlock(); wait(); lock2.lock();   
  }  lock1.lock(); 
} 
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Starvation-Free Parallel Program 
Executions"

•  A parallel program execution exhibits starvation if some task is 
repeatedly denied the opportunity to make progress 
— Starvation-freedom is sometimes referred to as “lock-out freedom” 

•  Common source of starvation: adjustment of priorities 
•  Classic “Priority Inversion” problem 

— Thread A is at high priority, waiting for result or resource from 
Thread C at low priority 

— Thread B at intermediate priority is CPU-bound 
— Thread C never runs, hence thread A never runs 
— Fix: when a high priority thread waits for a low priority thread, 

boost the priority of the low-priority thread 
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Bounded Wait"
•  A parallel program execution exhibits bounded wait if each task 

requesting a resource should only have to wait for a bounded 
number of other tasks to “cut in line” i.e., to gain access to 
the resource after its request has been registered. 

•  If bound = 0, then the program execution is fair 
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Progress Mutual Exclusion Bounded Wait 

Oversimplifying Assumptions 

Are there door  
locks? No cutting in! 

Well, Did you  
see anybody  

go in? 
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•  Progress? •  Bounded Wait? 

What's the difference? 
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•  Progress? 
— If no process is 
waiting for a 
resource and several 
processes are 
requesting access to 
the resource, then 
access to the 
resource cannot be 
postponed 
indefinitely 
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•  Progress? 
— If no process is 
waiting in its critical 
section and several 
processes are trying 
to get into their 
critical section, then 
entry to the critical 
section cannot be 
postponed 
indefinitely 

•  Bounded Wait? 
— A process 
requesting 
access to a 
resource should 
only have to wait 
for a bounded 
number of other 
processes to 
access the 
resource that 
requested access 
after it 
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Related Concepts"
•  A resource is said to be wait-free if it is starvation-free, 

livelock-free, and deadlock-free 
•  A resource is said to be lock-free if it is livelock-free and 

deadlock-free 
•  A resource is said to be obstruction-free if it is deadlock-free 


