
COMP 322: Fundamentals of
Parallel Programming

Lecture 18: Task Affinity with Places
(contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 18 20 February 20121

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments
• Supercomputing 2007 tutorial on “Programming using the

Partitioned Global Address Space (PGAS) Model” by Tarek
El-Ghazawi and Vivek Sarkar
—http://sc07.supercomputing.org/schedule/event_detail.php?evid=11029

2

COMP 322, Spring 2012 (V.Sarkar)

Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

3

COMP 322, Spring 2012 (V.Sarkar)

Example of –places 4:2 option on a SUG@R
node (4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3;
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

4

COMP 322, Spring 2012 (V.Sarkar)

Example HJ program with places

5

COMP 322, Spring 2012 (V.Sarkar)

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin(int iterations,
2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish for (point [jj] : [0:numChunks-1])
5. async at(d.get(jj) {
6. for (point [j] : getChunk([1:n],numChunks,jj))
7. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
8. } // finish-for-async
9. double[] temp = myNew; myNew = myVal; myVal = temp;
10. } // for iter
11. } // runDistChunkedForkJoin

•Chunk jj is always executed in the same place for each iteration,
iter
•Method runDistChunkedForkJoin can be called with values of distribution
parameter d

6

COMP 322, Spring 2012 (V.Sarkar)

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

7

COMP 322, Spring 2012 (V.Sarkar)

Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to

places e.g.,
— i ! place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to
store and compute these mappings

• For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

8

COMP 322, Spring 2012 (V.Sarkar)

Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

9

COMP 322, Spring 2012 (V.Sarkar)

Block Distribution (contd)
• If the input region is multidimensional, then a block distribution

is computed over the linearized one-dimensional version of the
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

10

COMP 322, Spring 2012 (V.Sarkar)

Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input

region r, while creating one async task for each iteration p at
the place dictated by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and
contents of input region r and input distribution d i.e., it is not
constrained to block distributions

11

COMP 322, Spring 2012 (V.Sarkar)

Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.

• A cyclic distribution “cycles” through places 0 … place.MAX
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

12

COMP 322, Spring 2012 (V.Sarkar)

Figure 1: Cyclic distribution for a 8×8 sized
region (e.g., [1:8,1:8]) mapped on to 5 places

0 1 2 3 4 0 1 2

3 4 0 1 2 3 4 0

1 2 3 4 0 1 2 3

4 0 1 2 3 4 0 1

2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2

3 4 0 1 2 3 4 0

1 2 3 4 0 1 2 3

Figure source: “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html

13

COMP 322, Spring 2012 (V.Sarkar)

Block-Cyclic Distribution
• dist.factory.blockCyclic([lo:hi],b) creates a block-cyclic

distribution over the one-dimensional region, lo:hi.

• A block-cyclic distribution combines the locality benefits of the
block distribution with the load-balancing benefits of the cyclic
distribution by introducing a block size parameter, b.

• The linearized region is first decomposed into contiguous blocks
of size b, and then the blocks are distributed in a cyclic manner
across the places.

• Example in Table 5: dist.factory.blockCyclic([0:15]) for 4 place
with block size b = 2

14

COMP 322, Spring 2012 (V.Sarkar)

Data Distributions
• In HJ, distributions are used to guide computation mappings for

affinity

• The idea of distributions was originally motivated by mapping data
(array elements) to processors

• e.g., Unified Parallel C (UPC) language for distributed-memory parallel
machines (Thread = Place)

• A pointer-to-shared can reference all locations in the
shared space, but there is data-thread affinity

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

on
ed

G

lo
ba

l
ad

dr
es

s
sp

ac
e

Thread 1

P
ri

va
te

Sp

ac
es

15

COMP 322, Spring 2012 (V.Sarkar)

Examples of Shared and Private Data Layout:

Assume THREADS = 3
shared int x; /*x will have affinity to thread 0 */

shared int y[2*THREADS]; /* cyclic distribution by default
*/

int z; /* private by default */

will result in the layout:

Thread 0 Thread 1 Thread 2
x

z z z

y[0] y[1] y[2]

Affinities for Shared and Private
Data in UPC

y[3] y[4] y[5]

16

COMP 322, Spring 2012 (V.Sarkar)

shared int A[4][THREADS];

will result in the following data layout:

Thread 0

A[0][0]

A[1][0]

A[2][0]

A[3][0]

A[0][1]

A[1][1]

A[2][1]

A[3][1]

A[0][2]

A[1][2]

A[2][2]

A[3][2]

Thread 1 Thread 2

Shared and Private Data

17

COMP 322, Spring 2012 (V.Sarkar)

Block-Cyclic Distributions for Shared Arrays

• Default block size is 1

• Shared arrays can be distributed on a block per thread basis,
round robin with arbitrary block sizes.

• A block size is specified in the declaration as follows:
— shared [block-size] type array[N];

—e.g.: shared [4] int a[16];

18

COMP 322, Spring 2012 (V.Sarkar)

Assume THREADS = 4

shared [3] int A[4][THREADS];

will result in the following data layout:

A[0][0]

A[0][1]

A[0][2]

A[3][0]
A[3][1]
A[3][2]

A[0][3]

A[1][0]

A[1][1]

A[3][3]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

Shared and Private Data

19

COMP 322, Spring 2012 (V.Sarkar)

Announcements (REMINDER)
• Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be
obtained on Sugar (see Section 4)

• No lab this week
—Use the time for HW3 and to prepare for Exam 1

• Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam

20

