COMP 322: Fundamentals of
Parallel Programming

Lecture 18: Task Affinity with Places
(contd)

Vivek Sarkar
Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lectute 18 20 February 2012 %3

Acknowledgments

¢ Supercomputing 2007 tutorial on “Programming using the
Partitioned Global Address Space (PGAS) Model” by Tarek
El-Ghazawi and Vivek Sarkar

—h

7. rcom ing.or

2 COMP 322, Spring 2012 (V.Sarkar) @

Places in HJ

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form "place(id=0)"

<place-expr>.id returns the id of the place as an int

async at(P) S

* Creates new fask to execute statement S at place P

+ async S is equivalent to async at(here) S

* Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

3 COMP 322, Spring 2012 (V.Sarkar) @

Example of —places 4:2 option on a SUG@R
node (4 places w/ 2 workers per place)

// Main program starts at place 0 async at(place.factory.place(l)) S3;
async at(place.factory.place(0)) S1; async at(place.factory.place(l)) S4;
async at(place.factory.place(0)) S2; async at(place.factory.place(l)) S5;
Core A Core B Core D
Place 1 [Res]

L2 unified cache |

[Reas|| Place O [Res

L2 unified cache

|

Core E Core F :- Core G Core H

Place 2 [Reas] Place 3

L2 unified cache L2 unified cache

async at(place.factory.place(2)) S6; async at(place.factory.place(3)) 89;
async at(place.factory.place(2)) S7; async at(place.factory.place(3)) S10;
async at(place.factory.place(2)) S8;

4 COMP 322, Spring 2012 (V.Sarkar) @

Example HJ program with places

1| class T1 {
2 final place affinity;
3 .
-4 // T1’s constructor sets affinity to place where instance was created
5 T1() { affinity = here; ... }
6 .
7|}
8 . . .
9| finish { // Inter—place parallelism
10 System.out.println (” Parent.place.=.", here); // Parent task s place
11 for (T1 a=. . .) {
12 async at (a.affinity) { // Execute async at place with affinity to a
13 a.foo ();
14 System.out.println (” Child_.place_=_", here); // Child task’s place
15 } // async
16 } // for
17| } // finish
18 . . .
5 COMP 322, Spring 2012 (V.Sarkar) @

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin(int iterations,

2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {

4. finish for (point [jj] : [0:numChunks-1])

5. async at(d.get(jj) {

6. for (point [j] : getChunk([1l:n],numChunks,jj))

7. myNew[j] = (myVal[j-1] + myVal[j+1l]) / 2.0;

8. } // finish-for-async

9. double[] temp = myNew; myNew = myVal; myVal = temp;

10. } // for iter
11. } // runDistChunkedForkJoin

*Chunk jj is always executed in the same place for each iteration,
iter

* Method runDistChunkedForkJoin can be called with values of distribution
parameter d

6 COMP 322, Spring 2012 (V.Sarkar) @

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

Locality benefits
will be realized
if all instances
of chunk 0
execute on the
same core and
reuse data from
the same cache

—
(%11
(@2]
N |
0.9]
NeJ
—
(ew]
p—t
p—t
—
[\
—
w
p—t
=
p—t
(%11

Index 0/11213

Placeid (O |12 |3|0|1|2|3|0|1|2 |3 |0/ |1/|2]3

7 COMP 322, Spring 2012 (V.Sarkar) @

Distributions --- hj.lang.dist

+ A distribution maps points in a rectangular index space (region) to
places e.g.,
— i > place.factory.place(i % place.MAX_PLACES-1)

* Programmers are free to create any data structure they choose to
store and compute these mappings

* For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

* Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d

—d.get(p) = place for point p mapped by distribution d. It is an error to
call d.get(p) if p.rank != d.rank.

—d.places() = set of places in the range of distribution d

—d.restrictToRegion(pl) = region of points mapped to place pl by
distribution d

8 COMP 322, Spring 2012 (V.Sarkar) @

Block Distribution

dist.factory.block([lo:hi]) creates a block distribution over the
one-dimensional region, lo:hi.

A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

Index [O0[1[2[3[4[5[6[7[8[9][10[11]12[13]|14]15
Place id 0 1 2 3

9 COMP 322, Spring 2012 (V.Sarkar) %‘g
Block Distribution (contd)

« If the input region is multidimensional, then a block distribution
is computed over the linearized one-dimensional version of the
multidimensional region

« Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

Index [[0,0] | [0,1] | [1,0] [[1,1] [[2,0] | [2,1] | [3,0] [[3,1] [[4,0] | [4,1] | [5,0] | [5,1] [[6,0] [[6,1] | [7,0] | [7,1]

Place id 0 1 2 3

10 - A
COMP 322, Spring 2012 (V.Sarkar) &

Distributed Parallel Loops

+ Listing 2 shows the typical pattern used to iterate over an input
region r, while creating one async task for each iteration p at
the place dictated by distribution d i.e., at place d.get(p).

+ This pattern works correctly regardless of the rank and
contents of input region r and input distribution d i.e., it is not
constrained to block distributions

1| finish {
2 region r = ... ; // e.g., [0:15] or [0:7,0:1]
3 dist d = dist.factory.block(r);
4 for (point p:r)
5 async at(d.get(p)) {
6 // Execute iteration p at place specified by distribution d
7
!
9| } // finish
100 . . .
11 COMP 322, Spri ?/@
, Spring 2012 (V.Sarkar) &

Cyclic Distribution

+ dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the
one-dimensional region, lo:hi.

* A cyclic distribution "cycles” through places O .. place. MAX
PLACES - 1 when spanning the input region

* Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

« Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

‘Index 0|(1(2|3|4|5|/6|7[8[9|10 11|12 |13 |14 | 15

‘Placeid0123012301230123

« Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

[Tndex [0,0] [[0.1] [[L0] | (L1] [[2,0] [2] | [3,0] | 3] [[40] [[4,1] | (5,01 | [5.1] [[6.0] | [6,1] | [7,0] | [7.1]

‘ Place id 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

12 COMP 322, Spring 2012 (V.Sarkar) %‘g

Figure 1: Cyclic distribution for a 8x8 sized
region (e.g., [1:8,1:8]) mapped on to 5 places

Figure source: “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
http: w.pearsonhighered. com/educator/academic/product/0,3110,0321487907,00.html

13 COMP 322, Spring 2012 (V.Sarkar)

Block-Cyclic Distribution

+ dist.factory.blockCyclic([lo:hi],b) creates a block-cyclic
distribution over the one-dimensional region, lo:hi.

A block-cyclic distribution combines the locality benefits of the
block distribution with the load-balancing benefits of the cyclic
distribution by introducing a block size parameter, b.

* The linearized region is first decomposed into contiguous blocks
of size b, and then the blocks are distributed in a cyclic manner
across the places.

« Example in Table 5: dist.factory.blockCyclic([0:15]) for 4 place

Index 0(1{2|3 /456|789 |10|11 |12 13|14 | 15

Placeid |O|O|1|1|2 233|001 |1]|2]|2/ 3]|3

14 COMP 322, Spring 2012 (V.Sarkar)

Data Distributions

In HJ, distributions are used to guide computation mappings for
affinity

The idea of distributions was originally motivated by mapping data
(array elements) to processors

e.g., Unified Parallel C (UPC) language for distributed-memory parallel
machines (Thread = Place)

]
s B Thread 0 Thread 1 Thread
? 2 THREADS-1
c w _
-0
=)
€83 Shared
€ = T
00O wm
29 Hrivate O Private 1 oo Private
g9 THREADS-1
g & N
* A pointer-to-shared can reference all locations in the
shared space, but there is data-thread affinity
15 COMP 322, Spring 2012 (V.Sarkar) @

Affinities for Shared and Private
Data in UPC

Examples of Shared and Private Data Layout:

Assume THREADS = 3
shared int x; /*x will have affinity to thread 0 */

shared int y[2*THREADS]; /* cyclic distribution by default
*/

int z; /* private by default */

will result in the layout:

Thread 0 Thread 1 Thread 2
|:| X
HY[O] y[1] |] y[2]

|
] y[3]] 4]] y15]
I] 2] z

16

COMP 322, Spring 2012 (V.Sarkar) @

Shared and Private Data

shared int A[4] [THREADS];

will result in the following data layout:

Thread 0 Thread 1 Thread 2
| Arorror | o]] AL0I[2]
A[1][0] A[1][1] A[l][2]
A[2][0] A[2][1] A[2][2]
A[3][0] A[3][1] A[3][2]
17 COMP 322, Spring 2012 (V.Sarkar)

Block-Cyclic Distributions for Shared Arrays

+ Default block size is 1

* Shared arrays can be distributed on a block per thread basis,
round robin with arbitrary block sizes.

A block size is specified in the declaration as follows:
— shared [block-size] type array[N];

—e.g.: shared [4] int a[lé6];

18 COMP 322, Spring 2012 (V.Sarkar)

Shared and Private Data

Assume THREADS = 4
shared [3] int A[4] [THREADS];

will result in the following data layout:

Thread 0 Thread 1 Thread 2 Thread 3
A[0][0] A[0][3] All][2] A[2][1]
A[0][1] A[1][0] A[1][3] A[2][2]
A[0][2] A[1][1] A[2][0] A[2][3]
A[3][0] A[3][3]

A[3][1]
A[3][2]
19 COMP 322, Spring 2012 (V.Sarkar)

Announcements (REMINDER)

+ Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be
obtained on Sugar (see Section 4)

* No lab this week
—Use the time for HW3 and to prepare for Exam 1

« Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam

20 COMP 322, Spring 2012 (V.Sarkar)

