Applications

Shingling

Minhashing
Locality-Sensitive Hashing

Mining of Massive Datasets

Leskovec, Rajaraman, and Ullman
Stanford University

Applications of Set-Similarity

Many data-mining problems can be expressed
as finding “similar” sets:

1. Pages with similar words, e.g., for
classification by topic.

2. NetFlix users with similar tastes in movies, for
recommendation systems.

3. : movies with similar sets of fans.
Entity resolution.

Similar Documents

Given a body of documents, e.g., the Web,

find pairs of documents with a lot of text in

common, such as:

= Mirror sites, or approximate mirrors.
Application: Don’t want to show both in a search.

= Plagiarism, including large quotations.
= Similar news articles at many news sites.

Application: Cluster articles by “same story.”

Three Essential Techniques for Similar

Documents

Shingling : convert documents, emails,
etc., to sets.

Minhashing : convert large sets to short
signatures, while preserving similarity.
Locality-sensitive hashing : focus on pairs
of signhatures likely to be similar.

The Big Picture

Docu-
ment

The set

of strings
of length k
that appear
in the doc-
ument

Minhash-

|

Locality-
sensitive
Hashing

A 4

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Candidate
pairs :

those pairs
of signatures
that we need
to test for
similarity.

Shingles

A k -shingle (or k -gram) for a document is a
sequence of k characters that appears in the
document.

: k=2; doc = abcab. Set of 2-shingles
= {ab, bc, ca}.
Represent a doc by its set of k-shingles.

Shingles and Similarity

9/2

9/2014

Documents that are intuitively similar will have
many shingles in common.
Changing a word only affects k-shingles within
distance k from the word.
Reordering paragraphs only affects the 2k
shingles that cross paragraph boundaries.
: k=3, “The dog which chased the cat”

versus “The dog that chased the cat”.
= Only 3-shingles replaced are g w, wh, whi, hic, ich,

ch_,and h_c.

Mining of Massive Datasets. Leskovec, Rajaraman and Ullman. Stanford University

Shingles: Compression Option

To compress long shingles, we can hash
them to (say) 4 bytes.

= Called tokens.

Represent a doc by its tokens, that is, the
set of hash values of its k-shingles.

Two documents could (rarely) appear to
have shingles in common, when in fact only

the hash-values were shared.

Jaccard Similarity Measure

Constructing Signatures

Jaccard Similarity

The Jaccard similarity of two sets is the size of
their intersection divided by the size of their
union.

sim(C,, C,) = |C,NGC,|/|C,UG,|.

Example: Jaccard Similarity

3 in intersection.
8 in union.
Jaccard similarity

=3/8

From Sets to Boolean Matrices

Rows = elements of the universal set.

: : the set of all k-shingles.

Columns = sets.

1inrowe and column S ifandonlyifeisa
member of S.

Column similarity is the Jaccard similarity of
the sets of their rows with 1.

Typical matrix is sparse.

Example: Column Similarity

O R O Kk KK OO

R, O R O RN

INO

Sim(C,, C,) =
2/5=0.4

Four Types of Rows

Given columns C, and C,, rows may be classified as:

¢ ¢,
a 1 1
b 1 0
C 0 1
d 0 0

Also, a = # rows of type a, etc.
Note Sim(C,, C,) =a/(a +b +c).

14

Imagine the rows permuted randomly.

Define minhash function h(C) = the number of
the first (in the permuted order) row in which
column C has 1.

Use several (e.g., 100) independent hash
functions to create a signature for each column.
The signatures can be displayed in another
matrix — the signature matrix — whose columns
represent the sets and the rows represent the
minhash values, in order for that column.

Minhashing Example

Input matrix Signature matrix M

(N[oojwRp (v | s

16

Surprising Property

The probability (over all permutations of
the rows) that h(C,) = h(C,) is the same as
Sim(C,, C,).
Both are a /(a +b +c)!

?

= Look down the permuted columns
C, and C, until we see a 1.

= Ifit’s a type-a row, then h(C,) = h(C,). Ifa
type-b or type-c row, then not.

Similarity for Signatures

The similarity of signatures is the fraction of the
minhash functions in which they agree.
= Thinking of signatures as columns of integers, the

similarity of signatures is the fraction of rows in
which they agree.

Thus, the expected similarity of two signatures
equals the Jaccard similarity of the columns or
sets that the signatures represent.

= And the longer the signatures, the smaller will be the
expected error.

Min Hashing — Example

Input matrix Signature matrix M

1 O 1 o) Col/Colo.75 | 0.75 | 0
Sig/Sig |0.67 | 1.00 | O

19

Focusing on Similar Minhash Signatures

Other Applications Will Follow

Locality-Sensitive Hashing

General idea: Generate from the collection of
all elements (signatures in our example) a small
list of candidate pairs: pairs of elements whose
similarity must be evaluated.

For signature matrices: Hash columns to many
buckets, and make elements of the same bucket
candidate pairs.

Candidate Generation From Minhash
Signatures

Pick a similarity threshold t, a fraction < 1.

We want a pair of columns ¢ and d of the

sighature matrix M to be a candidate pair if

and only if their signatures agree in at least

fraction t of the rows.

= |.e., M(i, c) = M(i, d) for at least fraction t
values of |.

LSH for Minhash Signatures

Big idea: hash columns of sighature matrix M

several times.
Arrange that (only) similar columns are likely

to hash to the same bucket.
Candidate pairs are those that hash

to the same bucket.

Partition Into Bands

r rows
\ per band

b bands

One
signature

Matrix M

Partition into Bands — (2)

Divide matrix M into b bands of r rows.

For each band, hash its portion of each column
to a hash table with k buckets.

= Make k as large as possible.

Candidate column pairs are those that hash to
the same bucket for = 1 band.

Tune b and r to catch most similar pairs, but
few nonsimilar pairs.

Hash Function for One Bucket

Buckets Columns2and 6

\ /4 T\ /T """"""""""" are probably identical

in this band.
)& %/ Columns 6 and 7 are

surely different.

v

Matrix M

9/29/2014 Mining of Massive Datasets. Leskovec, Rajaraman and Ullman. Stanford University 31

Example — Bands

Suppose 100,000 columns.

Signatures of 100 integers.

Therefore, signatures take 40Mb.

Want all 80%-similar pairs of documents.
5,000,000,000 pairs of sighatures can take a
while to compare.

Choose 20 bands of 5 integers/band.

Suppose C,, C, are 80% Similar

Probability C;, C, identical in one particular
pand: (0.8)> = 0.328.

Probability C;, C, are similar in any of the 20
pands: (1-0.328)%° = .00035 .

= j.e., about 1/3000th of the 80%-similar underlying
sets are false negatives.

LSH Summary

Tune to get almost all pairs with similar
signatures, but eliminate most pairs that
do not have similar signatures.
Check that candidate pairs really do have
similar signatures.

. In another pass through data,
check that the remaining candidate pairs
really represent similar sets .

Entity Resolution
Fingerprints
Similar News Articles

Mining of Massive Datasets

Leskovec, Rajaraman, and Ullman
Stanford University

Entity Resolution

The entity-resolution problem is to examine a
collection of records and determine which refer
to the same entity.

= Entities could be people, events, etc.
Typically, we want to merge records if their
values in corresponding fields are similar.

Matching Customer Records

| once took a consulting job solving the
following problem:

= Company A agreed to solicit customers for Company
B, for a fee.

= They then argued over how many customers.

= Neither recorded exactly which customers were
involved.

Customer Records — (2)

Each company had about 1 million records
describing customers that might have been

sent from A to B.
Records had name, address, and phone, but
for various reasons, they could be different

for the same person.

Customer Records — (3)

Step 1: Design a measure (“score ”) of how
similar records are:

= E.g., deduct points for small misspellings (“Jeffrey”
vs. “Jeffery”) or same phone with different area
code.

Step 2: Score all pairs of records that the LSH
scheme identified as candidates; report high
scores as matches.

Customer Records — (4)

Problem: (1 million)? is too many pairs of
records to score.
Solution: A simple LSH.

= Three hash functions: exact values of name,
address, phone.

Compare iff records are identical in at least one.

= Misses similar records with a small differences in
all three fields.

: Hashing Names, Etc.

How do we hash strings such as names so
there is one bucket for each string?
Answer: Sort the strings instead.

Another option was to use a few million
buckets, and deal with buckets that contain
several different strings.

Aside: Validation of Results

We were able to tell what values of the scoring
function were reliable in an interesting way.
ldentical records had a creation date difference
of 10 days.

We only looked for records created within 90
days of each other, so bogus matches had a 45-
day average.

Validation - (2)

By looking at the pool of matches with a fixed
score, we could compute the average time-
difference, say x, and deduce that fraction
(45-x)/35 of them were valid matches.

Alas, the lawyers didn’t think the jury would
understand.

Validation — Generalized

Any field not used in the LSH could have been
used to validate, provided corresponding values
were closer for true matches than false.

. if records had a field, we would
expect true matches to be close, false matches
to have the average difference for random
people.

Backup

Implementation of Minhashing

Suppose 1 billion rows.
Hard to pick a random permutation of

1...billion.
Representing a random permutation requires

1 billion entries.
Accessing rows in permuted order leads to

thrashing.

Implementation — (2)

A good approximation to permuting rows:
pick, say, 100 hash functions.

For each column ¢ and each hash function
h, keep a “slot” M(i, c).

Intent: M(i, c) will become the smallest

value of h; (r) for which column ¢ has 1 in
row r.

= |.e., h;(r) gives order of rows for i t" permutation.

Implementation — (3)

for each row r do begin
for each hash function h; do
compute h;(r);
for each column ¢
ifchaslinrowr
for each hash function h; do

if h,(r) is smaller than M(i, c) then
M(i, c) := h;(r);
end;

SEE

Row
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1
h(x) =x mod g

g(x) = (2x+1) mod 5

8

8

23

Implementation — (4)

Often, data is given by column, not row.

= Example: columns = documents, rows = shingles.
If so, sort matrix once so it is by row.

Suppose C,, C, Only 40% Similar

’robability C,, C, identical in any one particular

pand: (0.4)° =0.01.
Probability C,, C, identical in = 1 of 20 bands:

<20*0.01=0.2.
But false positives much lower for similarities
<< 40%.

Analysis of LSH - What We Want

/

Probability
[=1ifs>t
Probability No chance
of sharing ifs<t

a bucket \

Similarity s of twosets ————*

t

What One Band of One Row Gives You

False

neqgatives
Remember: 9

probability of equal
minhash values
= Jaccard similarity

Probability
of sharing
a bucket

False
positives

Similarity s of twosets ——*

36

What b Bands of r Rows Gives You

|

Probability
of sharing
a bucket

t ~ (2/b)*"

A‘/

__/

t

Similarity s of tw

o sets -

At least
one band No bands
identical identical

\/

1 - (1_5r)b

/\

Somerow Allrows
of aband ofaband

unequal areequal

37

Example: b =20;r =5

s | 1-(1-s")b
2 .006

3 .047

4 .186

.5 470

.6 .802

7 975

8 9996

