Introduction to Data Visualization and Infographics

Jane Zhao Digital Media Commons Fondren Library

Student survey, Spring 2015

Undergraduate

9 Would you be interested in taking a library short

Graduate

#	Answer	Response	%
1	Zotero	162	21%
2	Mendeley	82	10%
3	EndNote	145	18%
4	GIS	223	28%
5	Visualizing data	270	34%
6	Creating infographics	292	37%
7	Digital storytelling	181	23%
8	Library research methods	232	29%
9	Navigating the library website	115	15%
10	Specific database(s) - (please specify)	16	2%
11	Other (please specify)	19	2%

9. Would you be interested in taking a library short

course on:

#	Answer	Response	%
1	Zotero	178	24%
2	Mendeley	168	23%
3	EndNote	245	34%
4	GIS	166	23%
5	Visualizing data	302	41%
6	Creating infographics	183	25%
7	Digital storytelling	132	18%
8	Library research methods	166	23%
9	Navigating the library website	85	12%
10	Specific database(s) - (please specify)	1 11	2%
11	Other (please specify)	21	3%

Books used

Cool Infographics

Effective Communication with Data Visualization and Design

Objectives

- Learn the basic concepts of data visualization and infographics as well as the best practices of information design
- Be aware the handy tools for creating Infographics and Data Visualization

Outline

- What is Infographics? What is Data Visualization?
- > Why do they work?
- What makes a good Infographic?
- Information design best practices.
- Tools for creating Infographics and Data Visualization.

 Creating a simple graphics with PowerPoint
 Visualizing a small set of data with Excel and Google Chart

INFOGRAPHICS AND DATA VISULIZATION

Check out some examples...

What is Infographics?

Your projects, our passion!

1ST FLOOR <u>CONSTRUCTION</u>

"Life of **Duitsiders** in Rio de Janeiro during the Time of the King"

Ariel Guerrero-Stewart, Ericka Howard, Tracey Franklin History 251 Rice University Spring 2012

In the nineteenth century there was a mainstream Brazilian society and then those who were outsiders to it. This map shows some of the places where these outcasts, including gypsies, prisoners, and freed slaves would have visited during their time in Rio. While other groups were confined in one specific area these people were distributed throughout the city.

Bayesian Clustering and Variable Selection of High-Dimensional Count Data

Department of Statistics, Rice University, Houston, Texas

Definition of Infographics

- Infographic is an abbreviation of "information graphic".
- It combines data visualizations, illustrations, text and images together into a format that tells a complete story (Krum, 2014, p. 6).
- It uses visual cues to communicate information.

Check out some examples...

What is Data Visualization?

DMC Equipment Circulation Statistics

An Example of Data Visualization

Definition of Data Visualization

- Data visualization is a visual representation of data or the practice of visualizing data.
- Common forms include pie charts, bar graphs, line charts, and so forth.
- It is a powerful tool that designers often use to help tell their story visually in an infographic (Krum, 2014, p. 6).

Data Visualization is a Separate Design Element Used in the Design of Infographics.

RICE Bayesian Clustering and Variable Selection of High-Dimensional Count Data Giwei Li and Marina Vannucci Department of Statistics, Rice University, Houston, Texas									
INTROD	UCTIONS	RESULTS AND DISCUSSION							
 An explosion of data for which the dimension p is cor than the sample size n, i.e., p >> n; A challenge to uncover the group structure of the oi to determine the discriminating variables; A lot of well studies on continuous and Gaussian-d scale data, e.g., DNA microarray; A call for Bayesian method on non-negative count or generation sequencing (RNA-Seq) and bag-of-word d Difficulties: the number of groups, normalization, vari 	siderably larger bservations and istributed large- data, e.g., next- ata; ability modeling.	 ■ Evaluation with Synthetic Data Synthetic Data Generating 20 observations and 1000 witables, of which r are discriminant: x_i/ r₂ = 1-1₁₁₂₄₅ (plattication (x_i(x) + 1_{ideatax}) platsant(x_i(x) + 1₁₁₁₂₄₅ (plattication (x) + 1_{ideatax}) platsant(x_i(x) + x_i) e₀ = 10 and to model overdispersion, we set θ₀ - Genma (w_i) + u_i(x_i) = 0, d_i = 0, d_i = 0, and d_i = 100. Statistical Performance Protection = 4 for the plateviar relativistic plattant constraints	Experiment on Real Data Uver and Kidney RNA-Seq Data Set ³ 22925 general registrations are sample and 7 replicates from a kidney sample, each from a single human male.						
STATISTICAL MODELS A	ND MCMC ALGORITHMS	 F score = ^{2XPrecision X Recall}/_{Precision Recall} Program settings: a = 0.01, b = a/X, c = 1/σ², α = 1, ω = 0.01. 							
■ Data and Parameter Specification • Observable Data × Is as et or p-dimensional observations from X populations; • Each element $x_{ij} \in Z^1$ is an nonnegative count number: $x_{ij} = \frac{X_{ij} - X_{ij}}{X_{ij} - X_{ij}} + \frac{X_{ij} - X_{ij}}{X_{ij} - X_$	• Dirichlet Process Model F() Between-component variability θ_1 θ_2 \cdots θ_i \cdots θ_n Within-component variability	ſ							
 Parameters for Clustering Observations n samples are from a mixture of K Poisson distributions: 	X_1 . X_2 X_{i} X_n .		· • · · · · · · ·						
$\begin{array}{c} f(\xi_{1} W)=\sum_{n=1}^{n} w_{1}(\xi_{1} \theta_{2});\\ \vdots\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	• Motivation: • The number of component if is unknown: • The prior distribution of q_1 is unknown: • Each d_1 , alterna a common but completely unknown $F(\cdot)$: • The prior of $F(\cdot)$ allow $f_1(\cdot)$, to then is the a weighting factor that characterizes: $F_k = Gramma(a, b_1)$: • Intergrating over $F(\cdot)$, we obtain $g_k d_{-k} - \frac{1}{k-1+e} \sum_{m=1,m\neq k} \delta(d_m) + \frac{a}{k-1+a} F_{2r}$: • If a only takes on K distinctive values, then we have a makture of the your observations g_1 and g_2 , for the same value are defined as being in the same value (atternet).	 Sensitivity Analysis We set ly = 40 and ψ = 10; Program settings: a = 0.01, b = a/X, c = 1/σ², a = 1, ω = 0.01. 	Veast (Sachtaronycao cerveksiae) RNA-Seq Data Set ⁴ •.6/74 genes. 3 replicates from rolem hexamer (PH) library preparation protocols and 3 replicates from oligo (D1) ones.						
• Assume γ_{j} s are independent Bernoulli random variables with perspectre u that $ U = \sum_{j=1}^{p} m_{ij} \cdot B_{ij}$ and $ U = \sum_{j=1}^{p} m_{ij} \cdot B_{ij}$	Posterior and Full Conditionals								
$\label{eq:production} \begin{array}{l} \textbf{p}_{i} \mbox{ stat} \ \textbf{s}_{i} \ \mbox{ stat} \ \textbf{s}_{i} \ \mbox{ stat} \ \textbf{s}_{i} \ \textbf{s}_$	• Protection: $\pi(Z, S, \Gamma, \theta, \theta_{0} X) \propto f(X Z, S, \Gamma, \theta, \theta_{0})\pi(Z)\pi(S)\pi(T)\pi(\theta)\pi(\theta_{0});$ • Full conditionals $s_{1} s_{1}, \Gamma, \theta_{n}, \theta_{0}, X_{n} - Gamma(\frac{1}{n^{2}} + h_{0}, \frac{1}{n^{2}} + \theta_{0}(\theta_{0} - \Gamma) + \theta_{0} \Gamma);$ (1) $\pi(r/ Z, S, \theta_{0}, \theta_{n}, X_{n}) \propto f(X_{1} Z, S, r, \theta, \theta_{0})\pi(r);$ (2) $\theta_{0} s_{1}, \Gamma, \theta_{n}, \theta_{0}, X_{n} - Gamma(\alpha + \Sigma_{1,n+4}h_{1,1}, b + \Gamma s_{1});$ (3)								
Hierarchical Framework Data Likelihood	$\pi(z_i = k Z_{-i}, s_i, \Gamma, \Theta, \theta_0, X_i.) \propto f(X_i. z_i = k, s_i, \Gamma, \theta_k, \theta_0) \pi(\theta_k \Theta_{-k}); (4)$								
• We assume (Paircon(x, 0,)) if x = k y = 1	MCMC Algorithms								
$ \begin{split} & \chi_{0} = \int p_{abc}(x_{0},y) & (f\gamma_{1} - a) \\ -1 \text{ table likelihood of each observations} \\ & \bullet \text{ table likelihood of each observations} \\ & f(X_{i} x_{i} = k, y_{i}, T_{0}, k_{0}) = \frac{k_{i}^{k_{i} = k_{0}}}{(k_{i}^{k_{i}}, y_{i})^{2}} \cdot \frac{(d_{i}^{k_{i}}, d_{i}^{k_{i}})}{(d_{i}^{k_{i}}, y_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, d_{i}^{k_{i}})}{(f_{i}^{k_{i}}, g_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, f\gamma_{i}^{k_{i}})}{(f_{i}^{k_{i}}, g_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, f\gamma_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}}})} \cdot \frac{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})^{2}} \cdot \frac{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})} \cdot \frac{(f\gamma_{i}^{k_{i}}, g_{i}^{k_{i}})}{(f\gamma_{i}^{k_{i}$	Random stating points Culput the extinue 2 and r Culput the extinue 2 and r extinue 2 and r ex	Proposed a fully Bayesian method for simultaneously clustering high-dimensional data and selecting the variables that best discriminate the different groups on Poisson model; Formulated the clustering problem in terms of Poisson mixture model via Dirichlet process with unknown K; Evaluated the MCMC algorithms on both simulated and real data and provided recommendations for priors; To extent Poisson model to negative binomial model and to model variance shrinkage more elaborate. Memore: Mitter Man, Lis Assesse, and R. Tostanis, humanization, testing, and Fate Discover Pate Estations for the Modeward Data, Batadated, 2012, Mantal Lis and S. 19, 823-838.							
• Full data likelihood: $f(X Z,S,\Gamma,\theta,\theta_0) = \prod_{i=1}^n f(X_i z_i = k, s_i, \Gamma, \theta_k, \theta_0).$	chain converges cluster via (3)	***. w. revau, www.vChain Samping Methods for Uncreat Process Measure Models', Journal of Comp *J. Marioni, C. Mason, S. Mane, M. Stephens, and Y. Gilad, "RNA-Seq: An Assessment of Technical R 4U. Nagalakshmi, Z. Wong, K. Waern, C. Shou, D. Raha, M. Gerstein, and M. Snyder, "The Transcript and the second s	souriesmen and originical statistics, 2000, Volume 9, Issae 2, pp. 249-295; Isproducibility and Comparison with Gene Expression Arrays", Genome Research, 2008, Volume 18; Ional Landscape of the Yeast Genome defined by RNA Sequencing", Science, Volume 302.						

WHY INFOGRAPHICS WORK?

SFIMA (South Florida Interactive Marketing Association) Cool Infograp.... (09:52:21 UTC). Retrieved from /www.slideshare.net/rtkrum/sfima-south-florida-interactive-marketing-association-cool-infographics

80% of the brain is dedicated to visual processing University of Rochester, 200

South Florida In ciation) Cool Infograp.... (09:52:21 UTC). Retrieved from da-interactive-marketing-association-cool-infographics

The human brain is a pattern recognition machine

A Table of Data, Hard to See its Pattern and Trend.

DMC Equipment Circulation Statistics

Month	2009	2011	2013	2015
January	133	166	272	240
February	183	230	368	456
March	227	294	457	497
April	207	310	461	588
May	75	119	139	214
June	92	127	165	188
July	78	140	151	211
August	60	170	188	194
September	145	362	294	343
October	175	312	348	404
November	232	414	583	591
December	114	157	249	324

Convert the Data to a Bar Chart, Easy to See the Pattern.

DMC Equipment Circulation Statistics

Convert the Data to a Line Chart, Easy to See the Trend.

DMC Equipment Circulation Statistics

Picture Superiority Effect

Memory retention after 3 days

10% Text or Audio Only

"Of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful."

Eward Tufte, Yale Professor

WHAT MAKES A GOOD INFOGRAPHIC?

A good infographic has all three:

Lankow, J., Ritchie, J., & Crooks, R. (2012). *Infographics [electronic resource]: the power of visual storytelling*. ©2012. P198

INFORMATION DESIGN BEST PRACTICES

Keep it simple

http://www.slideshare.net/bethanyvsmith/pecha-kucha-presentation-zen? qid=c59c4f27-0731-4a00-98b5-396ec71bd13a&v=&b=&from_search=1

"Simplicity means the achievement of maximum effect with minimum means."

- Dr. Koichi Kawana – artist, designer, and architect

Designed by HotButterStudio, http://www.zazzle.com/poster-228276710365015813

Use a simple text message combined with a relevant image.

Getting information off the Internet is like taking a drink from a fire hydrant.

Mitchell Kapor

http://www.slideshare.net/rtkrum/sfima-south-florida-interactive-marketing-association-cool-infographics-feb-2014? qid=c7d62517-2289-4642-9d64-285cf2579059&v=&b=&from_search=1

Make it unique!

human-subway-map.html http://www.coolinfographics.com/blog/2010/3/11/underskin-theA good infographic leaves you feeling informed or delighted.

- Krum, Randy, Cool Infographics, P52
DATA VISUALIZATION BEST PRACTICES

Choose the appropriate graph based on the relationship type!

- Graphs are a representation of the relationships in quantitative information.
- The graph type chosen is based on the type of relationship.
- Different types of graphs can display some types of relationships better than others.
- When there are a number of acceptable options, choose the graph that you think is the best (most effective) way to convey your message to your audience (Lankow et al., 2012, p. 213).

Bar Chart for Ranking or Time Series

2015 DMC Equipment Circulation Statistics

Avoid 3-D Bar Chart

2015 DMC Equipment Circulation Statistics

2015

Avoid 3-D Bar Chart

Stacked Bar Chart for Multiple Part-to-Whole Relationships

Pie Chart for Part-to-Whole Comparisons

2014-2015 Library Instruction Session Statistics

Pie Chart for Part-to-Whole Comparisons

2014-2015 People Trained by Library Instruction Sessions

Avoid 3-D Pie Chart

Show Me the Numbers, P8

Line Chart for Time Series

DMC Equipment Circulation Statistics

Keep the Line Chart to Four or Fewer. Otherwise the Chart is Too Busy!

DMC Equipment Circulation Statistics

Use the Practice of Paneling and a Constant Scale for Consistency if You have More Than Four Lines.

10 11 12

Stacked Bar Chart for Multiple Part-towhole Relationships

Stacked Bar Chart for Multiple Part-to-whole Relationships

A Mix of Bar Chart and Line Chart

Make sure your infographic is complaint with Color Universal Design (CUG), which means the graphical information is conveyed accurately to people with various types of color vision, including people with color blindness.

Adjust hue or color brightness

to make color-bind friendly color schemes

A. Original image B. Color-blind proof C. Optimized design

http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html

Use Photoshop/Illustrator to Proof Colors

Photoshop CC File Edit Image Layer Type Select Filter 3D	View Window Help
🔴 🍈	Proof Setup Custom
× 1row-2nd-chart-styles.png @ 100% (Layer 0, RGB/8*)	Gamut Warning ☆% Y Working CMYK Pixel Aspect Ratio ► Working Cyan Plate Pixel Aspect Ratio Correction Working Magenta Plate 32-bit Preview Options Working Yellow Plate
	Zoom In
DMC Equipr	Fit on Screen #0 Legacy Macintosh RGB (Gamma 1.8) Fit Artboard on Screen Internet Standard RGB (sRGB) 100% #1 Monitor RGB
4500	200% Print Size ✓ Color Blindness - Protanopia-type Color Blindness - Deuteranopia-type
4000	Screen Mode ► ✓ Extras
3500	Show Rulers Rulers
3000	✓ Snap ① 公米; Snap To ▶
2500	Lock Guides Clear Guides New Guide New Guide Layout New Guide Layout
1500	Lock Slices Clear Slices Enter Full Screen

Choice of colors for color-blind readers - Tips from Edward Tufte website

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000HT

Set of colors that is unambiguous both to colorblinds and non-colorblinds

Original	Simulation					for Photosho Freehand, etc	for Word, Power Point, Canvas, etc	
	Protan	Deutan	Tritan		Hue	C,M,Y,K (%)	R,G,B (0-255	R,G,B (%)
1	Ì	1		Black	- °	(0,0,0,100)	(0,0,0)	(0,0,0)
2	2			Orange	41°	(0,50,100,0)	(230,159,0)	(90,60,0)
3				Sky Blue	202°	(80,0,0,0)	(86,180,233)	(35,70,90)
4				bluish Green	164°	(97,0,75,0)	(0,158,115)	(0,60,50)
5				Yellow	56°	(10,5,90,0)	(240,228,66)	(95,90,25)
6				Blue	202°	(100,50,0,0)	(0,114,178)	(0,45,70)
7	6 - I		1	Vermilion	27°	(0,80,100,0)	(213,94,0)	(80,40,0)
8				reddish Purple	326°	(10,70,0,0)	(204,121,167)	(80,60,70)

Fig. 16 Colorblind barrier-free color pallet

Use Color Brewer as a Reference to Create Color-blind Friendly Color Scheme

http://colorbrewer2.org/ – Color Advice for Cartography

Do Excel's built-in chart styles pass color-blind test?

Left: Excel chart style -1^{st} row 2^{nd} one

Right: after turning on colorblindness tool in Photoshop

Left: Excel chart style - 3rd row 2nd one

Right: after turning on colorblindness tool in Photoshop

Left: Excel chart style – 4th row 3rd one

Right: after turning on colorblindness tool in Photoshop

My finding: It is safe to use Excel's built-in chart styles to create color-blind friendly color schemes!

TOOLS FOR CREATING INFOGRAPHICS AND DATA VISUALIZATION

Desktop Tools – Vector Graphics

PowerPoint	Excel	Adobe Illustrator	Adobe InDesign
		Ai	ID
Gephi(free)	OmniGraffle	InkScape(free)	
Gephi	*		

By InDesign

Digital Media Commons

Will Wang , Jane Zhao

40,55,5°5

Our Mission

The DMC supports the creation and use of multimedia in education, scholarship, and creative expression. Working toward this end, 5.

we provide services that include hands-on training, assistance with digital projects, and access to the essential tools for creating digital resources such as digital video and audio, images and animations, infographics, PowerPoint presentations, web pages, and more.

DMC Offers Hands-on Training on Media Editing and Assistance with Various Digital Projects

- 1. Help with using DMC equipment
- 2. Demonstration of DMC equipment
- 3. Assistance on video/audio editing, and graphics creation
- 4. Consultation on patron's project
- 5. Short courses for using digital tools

3

DMC Provides Access to the Essential Tools and Facilities for Creating Digital Media

Poster printing
 Skyping/Podcasting
 Equipment available for checking out
 Lecture/interview recording
 Photo taking
 iMovie, Final Cut Pro, Photoshop, Illustrator, InDesign, and more

dmc.rice.edu | dmc-info@rice.edu | 713-348-3635

and agement rives

By PowerPoint

Digital Media Commons Will Wang, Jane Zhao

Our mission

The DMC supports the creation and use of multimedia in education, scholarship, and creative expression. Working toward this end, we provide services that include hands-on training, assistance with digital projects, and access to the essential tools for creating digital resources such as digital video and audio, images and animations, PowerPoint presentations eb pages, and more.

DMC Offers Hands-on Training on Media Editing and Assistance with Various Digital Projects

Help with using DMC equipment
 Demonstration of DMC equipment
 Assistance on video/audio editing, and graphics creation
 Consultation on patron's project

3

DMC Provides Access to the Essential Tools and Facilities for Creating Digital Media

1. Poster printing 2. Skyping/Podcasting 3. Equipment available for checking out 4. Lecture/interview recording 5. Photo taking 6. iMovie, Final Cut Pro, Photoshop, Illustrator, InDesign, and more

dmc.rice.edu | dmc-info@rice.edu | (713) 348-3635

Your Projects, Our Passion!

5

Desktop Tools – Image Editing

Adobe Photoshop	Gimp(free)
PS	
Pixelmator	Acorn

Gephi

<u>https://dhs.stanford.edu/tools/maps-graphs-and-workshops/</u>

Diagram 2 - Anhui Co-Provincials in Chen's Networks

Online Tools

- Wordle.net <u>http://www.wordle.net/</u>
- Google Chart <u>https://developers.google.com/chart/</u>
- Tableau Public <u>https://public.tableau.com/s</u>

Online Infographics Resources

Periodic Table of Visualization Methods

Online Infographics Resources

The Noun Project

Ø	ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	Ø	ø
Ø	Ø	Ø	ø	ø	Ø	ø	Ø	ø	Ø	ø	ø
Ø			[4]			.		Ů	ዯ	Ħ	de la compactación de la
J	P		ß	æ			+ =	000000000	BIE	= -	ŧ
8,8		ŧ		Š	بع	4	~		60	\$₽ ₽	ρα
ڻڻ	ଢ଼ଢ଼	C	X	T	X	Ĩ		ä	≫		₽ ₽
ڻن آ <i>لا</i>	ଜିର୍ଚ୍ଚ 音	ت ع	X Ŷ	t T	*	€) €	*		»~ J	企 17	₽₽ ₩
ڻڻ (آي) (آي)	هُم ت ۲	€ - ``	X Ŷ Ĩ	T M		€ € €	* •		») ;	企 TT i	₽ [₽]
ڻڻ آگ آ			¥ ↑ ₩	т Т Ф		€ € €	اللہ اللہ اللہ اللہ اللہ اللہ اللہ اللہ		»)) i @	▲ ¶ ↓ %	÷÷ M ↓
Online Infographics Resources

- Periodic Table of Visualization Methods
- The Noun Project
- <u>22 free tools for data visualization and</u> <u>analysis</u>
- infographics world
- Datavisualization.ch Selected Tools <u>http://selection.datavisualization.ch/</u>

More Sample Infographics

- Cool infographics <u>http://www.coolinfographics.com/</u>
- Edward Tufte <u>http://www.edwardtufte.com/tufte/posters</u>
- Information is beautiful <u>http://www.informationisbeautiful.net/</u> by David McCandless, an author and designer.

Data Sources

- data.gov <u>http://www.data.gov/</u>.
- FactBrowser <u>http://www.factbrowser.com/</u>
- Google Public Data <u>http://www.google.com/publicdata/directory</u>
- Wolfram Alpha <u>http://www.wolframalpha.com/</u>
- Wikipedia <u>https://en.wikipedia.org/wiki/Main_Page</u>

On Campus Resources

- Data Visualization Center
- <u>Kelly Center for Government Information</u>, <u>Data, and Geospatial Services</u>
- GIS Data Center

Summary

- > A good infographic should be useful, sound, and beautiful.
- Best practices
 - Information Design
 - ➤ Keep it simple
 - Use a simple text combined with a relevant image
 - Make it unique
 - Data Visualization
 - > Bar Chart for ranking and time series, starting with zero baseline, avoid 3-D
 - Pie Chart for part-to-whole comparisons, limiting to 5 slicess, avoid 3-D
 - Line Chart for time series, limiting to 4 or less
- Use color schemes that are color-blind friendly
- > Tools
 - > PowerPoint, Excel, Illustrator, InDesign, Gephi, Photoshop, Gimp
 - > Wordle, Google Chart, Tableau Public

Infographics, Communicate Information with Graphics