
Concurrent Collections (CnC)

The material presented in this document is an adaptation from chapter 2
of a master’s thesis: Implementing Asynchronous Checkpoint/Restart for the
Concurrent Collections Model [1].

CnC is a system for describing the structure of parallel computation,
or coordinating the data- and control-flow between the individual steps of
a computation [2, 3]. A CnC application specifies a set of discrete step
functions, and the data collections used as input to and output from those
step functions.1 The CnC coordination language describes the relationship
between a specific invocation of a step function, its input and output data, as
well as parent/child relationships between to other step function invocations.

1 Key Properties of CnC
In this section we outline several distinctive characteristics of the CnC pro-
gramming model. These are the same characteristics that make the CnC
programming model well suited for expressing large-scale parallel computa-
tions. The characteristics include graph representation, single-assignment
data, monotonically growing state, discrete computation steps, and side-
effect-free computation steps.

1.1 Graph Representation of the Application
A fundamental characteristic of a CnC application is that the entire com-
putation flow is represented as a graph. An application is partitioned into
collections of computation steps and data items, each of which describe a

1 This model varies slightly from the traditional CnC model in that it lacks control
collections; however, this elision in our model reflects the absence of control collections
in the Habanero variants of CnC developed at Rice University, on which this work is
based. For a brief overview of control collections, and a discussion of the equivalence of
this simplified CnC model with the traditional model, please see Appendix A in [1].

1



Filter 1 Filter 2

Item A Item B Item C

Figure 1: The abstract graph representation of a simple data-filtering CnC
application. The two ellipses represent step collections for two separate levels
of filtering. The three rectangles represent item collections for holding all of
the input data (Item A), the results of the first filter pass (Item B), and
the final output from the second filter pass (Item C). Solid edges represent
puts to and gets from item collections. Dashed edges represent prescriptions
(creation) of new step instances. Jagged edges represent the interactions
with the application environment that encloses the CnC graph.

class of step (computation) or item (data) instances. These collections serve
as the nodes of the graph. The prescribe (step creation), put (item creation)
and get (item read) relationships among the collections are represented as
edges in the graph. Figure 1 shows a graph representation for a simple CnC
application. By default, we mean a static program graph, when referring to
a CnC graph. When necessary, we will differentiate between a static CnC
graph, which defines a CnC program, and a dynamic CnC graph, which
defines a CnC program execution.

By providing a high-level graphical representation of the application, the
user provides the CnC runtime with all the necessary information to auto-
matically track the incremental progress of the application. In the case of
a failure, the runtime can restart the computation by simply restarting all
of the computation steps that were running at the time of the failure, and
providing the input data for those steps to run to completion.

1.2 Single-Assignment Data
In a traditional imperative computation model, an application calculates in-
cremental solutions to a problem by updating (or mutating) its in-memory
data, eventually resulting in the final output. In contrast, CnC takes a func-

2



tional rather than imperative approach to modeling state. All data available
at the level of the CnC computation graph is single-assignment, meaning that
once a data item is created it is never updated. An individual computation
step is free to mutate data local to that step, but all such mutations must be
fully encapsulated within the step.

1.3 Monotonically Growing State
A property that follows from the single-assignment property is the monotonic-
ity property. Since data cannot be updated after appearing in the graph, the
overall state of a CnC application appears to only add new data, never re-
moving or mutating previous data. A CnC implementation can optionally
free data that is no longer required, though this process can, in general, be
more complicated than garbage collection in functional languages [4].

1.4 Discrete and Side-Effect-Free Computation Steps
A traditional application may be implicitly divided into several logical com-
putations, but the CnC programming model makes these divisions explicit.
The CnC runtime takes advantage of discrete computation steps to run com-
putation steps in parallel on multicore hardware. The fact that CnC applica-
tions have discrete computation steps with explicit inputs allows us to restart
any given computation at the CnC step granularity. In addition, computa-
tion steps in CnC are side-effect-free because the only observable outputs of
CnC steps are their items put and steps prescribed. This means that if a
computation failed mid-step, there is no possibility that some incremental
updates made by the step will corrupt the global CnC graphs state. These
properties allow us to safely restart an application that failed at any point
in the computation.

2 A Sample CnC Application
To better describe the CnC programming model, we now introduce a simple
CnC application as an example. This sample application computes binomial
coefficients—i.e., the values of nCk (n choose k)—via Pascal’s Triangle.

3



�

� �

� � �

� � � �

� � � � �

� � � � � �

� � � �� �� � �

� � � �� �� �� � �

	 � � �� �� �� �� � �


 � 	 �	 �� �� �� �	 	 �

� � � � � � � 	 


�

Figure 2: The first nine rows of Pascal’s Triangle. The entries of Pascal’s
Triangle correspond to the binomial coefficients, such that the entry at row
n, column k is equal to nCk.

2.1 Review of Pascal’s Triangle
Figure 2 shows the first nine rows of Pascal’s Triangle. If P (n, k) is the value
at row n, column k of Pascal’s Triangle (where both the row and column
numbers are zero-based), then for all n ≥ k ≥ 0:

P (n, 0) = P (n, n) = 1 (1a)
P (n, k) = P (n− 1, k − 1) + P (n− 1, k) (1b)

Equations (1a) and (1b) exactly match the recursive definition for the bi-
nomial coefficients [5]; hence, the entry of Pascal’s Triangle at row n, column
k corresponds to the binomial coefficient nCk [6].

2.2 Structure of the CnC Graph
As explained earlier in this section, every CnC application must specify a set
of step collections, corresponding to the functions used in computation, and a
set of item collections, corresponding to the data on which the steps operate.
To compute the value of nCk, we must compute n rows and k columns of
Pascal’s Triangle. Since the only type of data we use in this computation

4



(both for building the triangle and in the result) is the set of values in the
triangle, we only need a single item collection to hold that data, which we
can call pascal-entries. Since we have two different equations for computing
the entries of the triangle, we have one step collection for computing values
based on equation (1a), and another based on equation (1b). We call the
first step collection edge-step since it computes the values along the left and
right edges of the triangle, and the second inner-step since it computes the
remaining values inside the triangle. A high-level sketch of the CnC graph
for this application is illustrated in figure 3.

In CnC, instances of step and item collections are differentiated by a
unique tag, often represented by an integer tuple; however, to differentiate
step and item collections, we typically refer to the tag of an item instance
as a key. We identify instances of both the item and step collections by the
row and column of the corresponding entry in Pascal’s Triangle; therefore,
the tags and keys for instances in all three collections are integer pairs of
the form ⟨row, col⟩. For simplicity, we use the notation L S: T M to denote
an instance of step collection S with the tag T , where the round brackets
correspond to the round nodes used for steps in the graphical representation
(as shown in figure 3). Similarly, we use the notation J I: K K to denote an
instance of item collection I with the key K, or J I: K→V K to denote that the
item instance has the value V , where the square brackets correspond to the
rectangular nodes used for items in the graphical representation.

To give our application a more dynamic feel, each step instance with tag
⟨row, col⟩ prescribes the step instance with tag ⟨row+1, col⟩. Since each row
of Pascal’s Triangle has one more column than the previous row, steps with
tags where row = col also need to prescribe the step with tag ⟨row+1, col+1⟩.
Each step instance also puts a single data item to the pascal-entries collection,
with a key matching the step’s tag, and the value rowCcol. Figure 4 illustrates
these relationships among the step and item collections, with the mapping
between step tags and item keys shown explicitly.

It is often useful in a CnC application to parameterize some aspects of
the graph structure. For example, one might want to parameterize the di-
mensions of the input matrices to a matrix kernel in order to make the code
more generic. In our application, we want to parameterize the values n and
k, which allows us to stop computation at row n of Pascal’s triangle. We
do this by setting values for n and k in the CnC graph’s context, which is
available to all CnC functions. These parameters are considered constant
throughout the graph execution. The step functions in our application use

5



edge-step inner-step

pascal-entries

Figure 3: The abstract graph representation of the Pascal’s Triangle CnC
application. Ellipses represent step collections (computation), and rectangles
represent item collections (data). Dashed edges represent step prescriptions
(creation), and solid edges represent puts to or gets from item collections.
Jagged edges represent interactions with the application environment that
encloses this CnC graph.

edge-step

〈row, col〉
pascal-entries

〈row, col〉

edge-step

〈row + 1, col〉

(a) Left-edge instances: col = 0

edge-step

〈row, col〉
pascal-entries

〈row, col〉

inner-step

〈row + 1, col〉
edge-step

〈row + 1, col + 1〉

(b) Right-edge instances: row = col

pascal-entries

〈row − 1, col − 1〉

pascal-entries

〈row − 1, col〉

inner-step

〈row, col〉
pascal-entries

〈row, col〉

inner-step

〈row + 1, col〉

(c) Inner instances: 0 < col < row

Figure 4: The prescribe, put and get relationships among the step and item
collections in the Pascal’s Triangle CnC application. Note that the topmost
entry of the triangle, where row = col = 0, is actually a special case that does
the edge-step prescription from the left edge and the edge-step prescription
from the right edge without an inner-step prescription.

6



these parameter values to compute whether or not to prescribe a new step
instance corresponding to the next row of the triangle.

2.3 Executing CnC Steps
Before a CnC step instance is executed, that step must be prescribed (created)
and all of its input data items must be available. The CnC runtime tracks
the status of step and item instances via attributes attached to the instances.
When some step instance (or the environment) prescribed a step in collection
S with tag T , step L S: T M is created with the control ready attribute. If a
step has a single input dependence on J I: K K, the step gains the data ready
attribute when an item with key K has been put to item collection I. If a
step has two or more such dependencies, the step is data ready only when all
of the input items have been put. If a step has zero input dependencies then
it is always considered data ready. Once a step is both control ready and
data ready, it gains the ready attribute, and is only then eligible to execute.

In our Pascal’s Triangle application, an instance of edge-step is ready as
soon as it is prescribed because it has no input dependencies on the item
collection. Since instances of inner-step depend on two item instances from
pascal-entries, an inner-step instance is only ready to execute after it has
been prescribed and both of the corresponding item instances have been put.

2.4 Interaction with the Environment
A CnC graph is typically embedded within a driver application, and we refer
to the portions of the application that interact with the CnC graph as the
environment. When CnC program execution is completed, the environment
must put all data, prescribe all steps, and set any parameters necessary to
properly initialize the CnC graph. The environment may also get values from
item collections, which acts as an output mechanism for the graph.

In our Pascal’s Triangle application, the environment initializes the graph’s
n and k parameters, then prescribes an L edge-step: 0,0 M, which corresponds
to the topmost entry of the triangle. From that point, the CnC runtime has
all the information it needs to compute the value for nCk. When the CnC
graph has completed its execution, the environment gets J pascal-entries: n,k K,
which holds the computed value of nCk.

7



2.5 Example Execution
We will now outline an example of an execution trace for our Pascal’s Triangle
application. For simplicity in tracing the execution, we assume that the
runtime has only a single worker thread, meaning that only one step can run
at a time. This assumption eliminates any possible concurrency among steps
in the computation and simplifies reasoning about program execution and
execution trace creation.

We pick 2C1 as the target value for this execution, therefore the environ-
ment initializes an instance of our CnC graph with the parameters n = 2
and k = 1. The environment also prescribes L edge-step: 0,0 M to start the
graph’s execution. Since L edge-step: 0,0 M has been prescribed and has no
input dependencies, it is ready to execute. The graph execution is described
textually below, and graphically in figure 5.

L edge-step: 0,0 M
puts J pascal-entries: 0,0→1 K;
prescribes L edge-step: 1,0 M and L edge-step: 1,1 M.

All steps in row 0 have now run to completion.

L edge-step: 1,0 M
puts J pascal-entries: 1,0→1 K;
prescribes L edge-step: 2,0 M.

L edge-step: 1,1 M
puts J pascal-entries: 1,1→1 K;
prescribes L inner-step: 2,1 M and L edge-step: 2,2 M.

All steps in row 1 have now run to completion.

L edge-step: 2,0 M
puts J pascal-entries: 2,0→1 K;
prescribes no steps since row = n = 2.L inner-step: 2,1 M depends on J pascal-entries: 1,0 K and J pascal-entries: 1,1 K,

but since both items were already put, it is ready to execute.

L inner-step: 2,1 M
gets J pascal-entries: 1,0→1 K and J pascal-entries: 1,1→1 K;

8



edge-step

〈0,0〉

pascal-entries

〈0,0〉 → 1

edge-step

〈1,0〉
pascal-entries

〈1,0〉 → 1

edge-step

〈1,1〉
pascal-entries

〈1,1〉 → 1

edge-step

〈2,0〉
pascal-entries

〈2,0〉 → 1

inner-step

〈2,1〉
pascal-entries

〈2,1〉 → 2

edge-step

〈2,2〉
pascal-entries

〈2,2〉 → 1

Figure 5: Dynamic CnC graph for the computation of 2C1.

puts J pascal-entries: 2,1→2 K;
prescribes no steps since row = n = 2.

L edge-step: 2,2 M
puts J pascal-entries: 2,2→1 K;
prescribes no steps since row = n = 2.

All steps in row 2 have now run to completion. Since all prescribed
steps have run to completion, the CnC graph execution is finished. The
environment gets item instance J pascal-entries: 2,1→2 K and correctly yields
the answer 2C1 = 2.

3 The CnC Continuum
CnC describes a programming paradigm rather than a specific runtime im-
plementation. As a result, there is quite a bit of flexibility in how a particular
CnC runtime may behave, and what requirements it might impose. One ex-
ample of this is the static or dynamic nature of the CnC graph. CnC has
no restrictions about how much of a application’s graph structure must be
computable statically versus computed dynamically at runtime. This results
in a variety of requirements in the existing CnC implementations pertain-
ing to the specification of inputs and outputs of CnC step functions. Some
implementations require that some or all of step tags and item keys to be
computed statically, whereas others allow all the inputs and outputs of a
step instance to be computed dynamically.

9



References
[1] N. Vrvilo, “Implementing Asynchronous Checkpoint/Restart for the

Concurrent Collections Model,” Master’s thesis, Rice University,
Houston, TX, 2014. https://habanero.rice.edu/vrvilo-ms.

[2] M. Burke, K. Knobe, R. Newton, and V. Sarkar, “Concurrent
collections programming model,” in Encyclopedia of Parallel Computing
(D. Padua, ed.), pp. 364–371, Springer US, 2011. http://goo.gl/UF4L0I.

[3] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, et al., “Concurrent
collections,” Scientific Programming, vol. 18, no. 3, pp. 203–217, 2010.

[4] D. Sbîrlea, K. Knobe, and V. Sarkar, “Folding of tagged single
assignment values for memory-efficient parallelism,” in Euro-Par 2012
Parallel Processing, pp. 601–613, Springer, 2012.

[5] E. W. Weisstein, “Binomial Coefficient. From MathWorld–A Wolfram
Web Resource.”
http://mathworld.wolfram.com/BinomialCoefficient.html. Accessed:
2014-03-15.

[6] E. W. Weisstein, “Pascal’s Triangle. From MathWorld–A Wolfram Web
Resource.” http://mathworld.wolfram.com/PascalsTriangle.html.
Accessed: 2014-03-15.

10

https://habanero.rice.edu/vrvilo-ms
http://goo.gl/UF4L0I
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/PascalsTriangle.html

	Key Properties of CnC
	Graph Representation of the Application
	Single-Assignment Data
	Monotonically Growing State
	Discrete and Side-Effect-Free Computation Steps

	A Sample CnC Application
	Review of Pascal's Triangle
	Structure of the CnC Graph
	Executing CnC Steps
	Interaction with the Environment
	Example Execution

	The CnC Continuum

