COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar

Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

COMP 515 Lecture 14 18 October, 2011

Acknowledgments

« Slides from previous offerings of COMP 515 by Prof. Ken
Kennedy

—http://www.cs.rice.edu/~ken/comp515/
« POPL 1996 tutorial by Krishna Palem & Vivek Sarkar

Control Dependences

Chapter 7 (contd)

Control Dependences
(Recap from Lecture 12)

 Constraints posed by control flow

DO 100 I =1, N
s, IF (A(I-1).GT. 0.0) GO TO 100 S, 91 5
S, A(I) = A(I) + B(I)*C

100 CONTINUE

If we vectorize by...
S, A(l:N) = A(1:N) + B(1:N)*C

DO 100 I =1, N

S IF (A(I-1).GT. 0.0) GO TO 100

1

100 CONTINUE
..we get the wrong answer
« We are missing dependences

« There is a dependence from S; to S, - a control dependence

4

Control Dependences

« Two strategies to deal with control dependences:

—If-conversion: expose by converting control dependences to data
dependences. Used for vectorization

- Also supported in SIMT hardware (e.g., GPGPUs) which
automatically masks out statements with control conditions =
false

— Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

Branch Classification

* Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

« Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

« Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest

—The break and return statements in C are examples of exit
branches, when they occur inside a loop

Branch removal for If-conversion

 Basic idea:
—Make a pass through the program.

— Maintain a Boolean expression cc that represents the condition that
must be true for the current expression to be executed

—On encountering a branch, conjoin the controlling expression into cc

—On encountering a target of a branch, its controlling expression is
disjoined into cc

Branch Removal: Forward Branches

« Remove forward branches by inserting appropriate guards

DO 100 I = 1,N

C, IF (A(I).GT.10) GO TO 60
20 A(I) = A(I) + 10
C, IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO
==>

DO 100 I = 1,N
ml = A(I).GT.10

20 IF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.ml.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I)
80 IF(.NOT.ml.AND..NOT.m2.0R.ml.OR..NOT.ml

.AND.m2) B(I) = A(I) - 5
ENDDO

8

Branch Removal: Forward Branches

« We can simplify to:
DO 100 I = 1,N
ml = A(I).GT.10

20 IF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF (.NOT.ml.AND..NOT.m2)
B(I) = B(I) + 10
60 IF (ml.OR..NOT.m2)
A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO

« and then vectorize to:

ml (1:N) = A(1l:N).GT.10
20 WHERE (.NOT.ml(1:N)) A(1:N) = A(1l:N) + 10
WHERE (.NOT.m1 (1:N)) m2(1:N) = B(1:N).GT.10
40 WHERE (.NOT.ml (1:N).AND..NOT.m2 (1:N))
B(1:N) = B(1:N) + 10
00 WHERE (ml(1:N).OR..NOT.m2 (1:N))

A‘l:Nz = B‘l:N; + A‘l:N:
80 B(1:N) = A(1:N) - 5 g)

Removal of Forward Branches: Correctness

e To show correctness we must establish:

—the guard for statement instance in the new program is true if and
only if the corresponding statement in the old program is executed,

- unless the statement has been introduced by the compiler to
capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

—the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

10

200

DO J =
DO I

ENDDO
D (J)

ENDDO

Exit Branches

A(I,J) = B(I,J) + X
IF (L(I,J)) GO TO 200
C(I,J) = A(I,J) + Y

= A (N, J)
F(J) = C(10,J)

« more complicated because they terminate a loop

Solution:
branches

relocate exit branches and convert them to forward

11

Exit Branches

DO J =1, M
DO I =1, N

A(I,J) = B(I,J) + X
S IF (L(I,J)) GO TO 200
C(I,J) = A(I,J) + Y
ENDDO
D(J) = A(N,J)
200 F(J) = C(10,J)
ENDDO

DO J =1, M
DO I =1, N

IF (C,) A(I,J) = B(I,J) + X
S, Code to set C; and C,
IF (C,) C(I,J) = A(I,J) + Y
ENDDO
Sy IF (.NOT.C;.OR..NOT.C,) GO TO 200
D(J) = A(N,J)
200 F(J) = C(1l0,J)

ENDDO 12

Exit Branches

« Statements in the inner loop should be executed only if exit
branch was not taken on any previous iteration

 For the i iteration, C; and C, should be
Im = AND(- L(k, J)), 1 = k = 1-1

1lm = .TRUE

DO I =1, N
IF (lm) A(I,J) = B(I,J) + X
IF (lm) ml = .NOT. L(I,J)
Im = 1Im .AND. ml
IF (lm) C(I,J) = A(I,J) + Y

ENDDO

m2 = 1m

IF (m2) D(J) = A(N,J)

200 F(J) = C(10,J)

ENDDO

Exit Branches

« After forward substitution and expansion of Im, we get:

DO J =1, M

Im(0,J) = .TRUE.

DO I =1, N
IF (lm(I-1,J)) A(I,J) = B(I,Jd) + X
IF (lm(I-1,J)) ml = .NOT.L(I,J)
Im(I,J) = 1Im(I-1,J) .AND. ml
IF (lm(I,J)) C(I,d) = A(I,d) + Y

ENDDO

IF (Im(N,J)) D(J) = A(N,J)

200 F(J) = C(10,J)

ENDDO

 codegen will produce four vectorized loops...

14

Exit Branches

« After running codegen:
DO J =1, M
Im(0,J) = .TRUE.
DO I =1, N
IF (lm(I-1,J)) ml =.NOT.L(I,J)

Im(I,J) = 1lm(I-1,J) .AND. ml
ENDDO
ENDDO
WHERE ((O:N-1,1:M)) A(1:N,1:M)=B(1:N,1:M)+X

1m
WHERE (Im(1:N,1:M)) C(1l:N,1:M)=A(1:N,1:M)+Y

WHERE (1lm (N, 1:M)) D(1:M) = A(N,1:M)
200 F(l1:M) = C(10,1:M)

« Procedure relocate_branches()

15

Control Dependence

« Disadvantages of if-conversion:
—Unnecessarily complicates code when code cannot be vectorized

—Cannot a priori analyze code to decide whether if-conversion will
lead to parallel code.

« Alternate approach: explicitly expose constraints due to control
flow as control dependences

16

Control Flow Graph Definition (Recap)

A control flow graph CFG = (N¢, E.,T.) consists of

e N., a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow i.e
a basic block.

e . C N.x N.x Labels, a set of labeled edges.

e 7., a node type mapping. T.(n) identifies the type of node
n as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node and a
unigue STOP node, and that for any node N in CFG, there
exist directed paths from START to N and from N to STOP.

17

Control Flow Graph: Example

F
do {
S1;
if (C1) continue;
do {
S2;
} while (C2);
S3;
} while (C3);
CONTROL FLOW GRAPH

18

Dominators: Definition

Node V dominates another node W # V if and only if every
directed path from START to W in CFG contains V.

Define dom(W) = {V | V. dominates W}, the set of dominators
of node W.

Consider any simple path from START to W containing W's
dominators in the order Vq,...,V,.. Then all simple paths from
START to W must contain W's dominators in the same order.
The element closest to W, V,, = idom(W), is called the
immediate dominator of W.

The idom relation can be represented as a directed tree with
root = START, and parent(W) = idom(W).

19

Postdominators: Definition

Node W postdominates another node V #= W if and only if
every directed path from V to STOP in CFG contains W.

Define pdom(V) = {W | W postdominates V'}, the set of
postdominators of node V.

Consider any simple path from V to STOP containing V's
postdominators in the order Wy,...,W,. Then all simple paths
from V to STOP must contain V's postdominators in the same
order. The element closest to V, W1 = ipdom(V'), is called the
immediate postdominator of V.

The ipdom relation can be represented as a directed tree with
root =is STOP and parent(V') = ipdom (V).

20

Examples of Dominator and
Postdominator Trees

P

STOP

CONTROL FLOW GRAPH

STOP

/

3

/

2

/

1

AN

START

POST-DOMINATOR TREE

START

/

1

/

2

/

3

21

DOMINATOR TREE

N

STOP

Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if
and only if

1. there exists a nonnull path X — Y, starting with the edge
labeled L, such that Y post-dominates every node, W,
strictly between X and Y in the path, and

2. Y does not post-dominate X.

Reference: “The Program Dependence Graph and its Use in
Optimization”, J. Ferrante et al, ACM TOPLAS, 1987

22

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

STOP

7/ N\

START

POSTDOMINATOR TREE

START

"y

1

A

2 3

CONTROL FLOW GRAPH CONTROL DEPENDENCE GRAPH

23

Control Dependence: Discussion

* A node x in directed graph G with a single exit node
postdominates node y in 6 if any path from y to the exit node
of 6 must pass through x.

« A statement y is said to be control dependent on another
statement x if:

—there exists a non-trivial path from x to y such that every
statement z=x in the path is postdominated by y and

—Xx is not postdominated by y.

« In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn't

* Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

24

Program Dependence Graph

Program Dependence Graph (PDG) consists of
1. Set of nodes, as in the CFG

2. Control dependence edges

3. Data dependence edges

Together, the control and data dependence edges dictate
whether or not a proposed code transformation is legal.

25

Example: Cyclic CFG and its CDG

CONTROL FLOW GRAPH

STOP
RN
3 ENTRY
/
2
/
1
POST-DOMINATOR TREE

CONTROL DEPENDENCE GRAPH

26

CDG for a Cyclic CFG

Problem: CFG and CDG can have different loop/interval
structures, in general

Solution: Compute CDG only for acyclic CFG's e.q.

1. Restrict construction and use of CDG's to innermost
intervals with acyclic CFG's.

2. Compute CDG for acyclic Forward Control Flow Graph),
which captures CFG’s loop structure by insertion of pseudo
nodes and edges. [Cytron, Ferrante, Sarkar 1990]

3. Compute CDG for each interval with an acyclic CFG,
treating subintervals as atomic nodes.

27

