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Control Dependences

Chapter 7 (contd)
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Example: Cyclic CFG and its CDG
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CDG for a Cyclic CFG
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Control Dependence and Parallelization
• From Chapter 2: Most loop transformations are unaffected by 

loop-independent dependences
—A forward-branch need not inhibit coarse-grain parallelization

• Iteration-reordering transformations like loop reversal, loop 
skewing, strip mining, index-set splitting, loop interchange do 
not affect loop-independent dependences

• Statement reordering transformations might be problematic: 
loop fusion, loop distribution
—Distribution can be performed by including control dependences in 

recurrence analysis, and performing scalar expansion on branch 
condition

—Fusion of loops that do not contain exit branches is also possible
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Loop Distribution
• Example:                    Control Dependence Graph

       for loop body
!    
! ! DO I = 1, N

1     IF (A(I).NE.0) THEN
2       IF (B(I)/A(I).GT.1) GOTO 4
     ENDIF
3     A(I) = B(I)
      GOTO 8
4     IF (A(I).GT.T) THEN
5       T = (B(I) - A(I)) + T
      ELSE
6       T = (T + B(I)) – A(I)
7       B(I) = A(I)
     ENDIF
8     C(I) = B(I) + C(I)
   ENDDO

START
t t
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Loop Distribution
• Fusion into "like" regions

—Loop 1 is parallel
—Loop 2 is sequential
—Loop 3 is parallel

! DO I = 1, N
1     IF (A(I).NE.0) THEN
2       IF (B(I)/A(I).GT.1) GOTO 4
     ENDIF
3     A(I) = B(I)
      GOTO 8
4     IF (A(I).GT.T) THEN
5       T = (B(I) - A(I)) + T
      ELSE
6       T = (T + B(I)) – A(I)
7       B(I) = A(I)
     ENDIF
8     C(I) = B(I) + C(I)
   ENDDO

 Need execution variables E2(I) 
and E4(I)  to hold result of 
branches at statement 2 and 4
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Loop Distribution
• Consider branch at node 2:

• 3 cases may hold
—Statement 2 is executed and the true 

branch to statement 4 is taken
—Statement 2 is executed and the false 

branch to statement 3 is taken
—Statement 2 is never executed 

because the false branch is taken at 
statement 1

• Corresponds to condition for doit 
variable to be set:
—A control dependence exists from 

S0 to S.

—S0 has its doit flag set
—Value of the conditional expression is the 

label on the branch
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Loop Distribution
• Use three corresponding values: True, False, Undefined

• Procedure DistributeCDG implements these ideas. It inserts 
execution variables at appropriate places in the code and 
selectively converts control dependences to data dependences
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Code Generation
• Problem: Mapping the arbitrary control flow represented in the 

control dependence graph to real machines
!   DO I = 1, N
    S1  IF (p1) GOTO 3

S2     ... 
   GOTO 4
3   IF (p3) GOTO 5

4   S4
5   S5
 ENDDO

Loop 
distribution
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Code Generation
• Code generated for first partition:
    DO I = 1, N

  E1(I) = p1

  IF (E1(I).EQ.FALSE) THEN

S2   ...

  ENDIF

S5   ...

ENDDO

• For second partition:
   DO I = 1, N

 IF((E1(I).EQ..TRUE.).AND..NOT.p3).OR.

    (E1(I).EQ..FALSE.)) THEN

S4    ...

 ENDIF

ENDDO
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Code Generation
• Observation: generating code for graphs in which every vertex 

has at most one control dependence predecessor is relatively 
easy

• Thus, transform graph into canonical form consisting of a set of 
control dependence trees with the following properties:
—each statement is control dependent on at most one other 

statement, i.e., each statement is a member of at most one tree
—the trees can be ordered so that all data dependences between 

trees flow from trees earlier in the order to trees that are later in 
the order i.e., there should be no non-trivial cycle of data 
dependence edges among control dependence trees
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Code Generation
• Simple recursive procedure

• Generate code for each of the subtree in an order consistent 
with the data dependences

• Roughly linear in size of the original dependence graph
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Conclusion
• Idea behind control flow dependences

• If-conversion
—Types of branches and branch removal
—Iterative dependences (append range to each statement) 

• Control Dependence Procedure as alternative to if-conversion

• Execution model for control dependence graphs

• Loop Distribution (selective if-conversion)

• Code Generation
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Compiler Improvement of Register 
Usage

Chapter 8
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Overview
• Improving memory hierarchy performance by compiler 

transformations
—Scalar Replacement
—Unroll-and-Jam

• Saving memory loads & stores 

• Make good use of the processor registers
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Motivating Example
DO I = 1, N

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ENDDO

ENDDO

• A(I) can be left in a register 
throughout the inner loop

• Standard register allocation fails 
to recognize this

DO I = 1, N

! T = A(I)

! DO J = 1, M

! ! T = T + B(J)

! ENDDO

! A(I) = T

ENDDO

• All loads and stores to A in the 
inner loop have been saved

• High chance of T being allocated a 
register by standard register 
allocation
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Scalar Replacement
• Convert array reference to scalar reference to improve 

performance of the coloring based allocator

• Our approach is to use dependences to achieve these memory 
hierarchy transformations
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Dependence and  Memory Hierarchy
• True or Flow dependence - save loads and cache misses

• Anti dependence - save cache misses

• Output dependence - save stores and cache misses

• Input “dependence” - save loads and cache misses
—Read-read control flow path with no intervening write

    A(I) = ... + B(I)

    ...  = A(I) + k

    A(I) = ...

    ...  = B(I)
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Dependence and Memory Hierarchy
• Loop Carried dependences - Consistent dependences most useful 

for memory management purposes

• Consistent dependences - dependences with constant threshold 
(dependence distance)
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Dependence and  Memory Hierarchy
• Problem of overcounting optimization opportunities. For example

 

   S1: A(I) = ... 

   S2: ...  = A(I) 

   S3: ...  = A(I)

• But we can save only two memory references not three

• Solution - Prune edges from dependence graph which don’t 
correspond to savings in memory accesses
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• In the reduction example

DO I = 1, N

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ENDDO

ENDDO

Using Dependences
DO I = 1, N

! T = A(I)

! DO J = 1, M

! ! T = T + B(J)

! ENDDO

! A(I) = T

ENDDO

• True dependence - replace the 
references to A in the inner loop by 
scalar T

• Output dependence - store can be 
moved outside the inner loop

• Anti dependence - load can be 
moved before the inner loop
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Scalar Replacement
• Example: Scalar Replacement in 

case of loop independent 
dependence

! DO I = 1, N

! ! A(I) = B(I) + C

! ! X(I) = A(I)*Q

! ENDDO

! DO I = 1, N

! ! t = B(I) + C

! ! A(I) = t

! ! X(I) = t*Q

! ENDDO

• One fewer load for each 
iteration for reference to A
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Scalar Replacement
• Example: Scalar Replacement in 

case of loop carried dependence 
spanning single iteration

!

! DO I = 1, N

! ! A(I) = B(I-1)

! ! B(I) = A(I) + C(I)

! ENDDO

! tB = B(0)

! DO I = 1, N

! ! tA = tB

! ! A(I) = tA

! ! tB = tA + C(I)

! ! B(I) = tB

! ENDDO

• One fewer load for each 
iteration for reference to B 
which had a loop carried true 
dependence spanning 1 iteration

• Also one fewer load per 
iteration for reference to A
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Scalar Replacement
• Example: Scalar Replacement in 

case of loop carried dependence 
spanning multiple iterations

!

! DO I = 1, N

! ! A(I) = B(I-1) + B(I+1)

! ENDDO

! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• One fewer load for each iteration 
for reference to B which had a 
loop carried input dependence 
spanning 2 iterations

• Invariants maintained were 
   t1=B(I-1);t2=B(I);t3=B(I+1)
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Preloop

Main Loop

Eliminate Scalar Copies
! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• Unnecessary register-register 
copies

• Unroll loop 3 times

! t1 = B(0)

! t2 = B(1)

! mN3 = MOD(N,3)

! DO I = 1, mN3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

! DO I = mN3 + 1, N, 3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = B(I+2)

! ! A(I+1) = t2 + t1

! ! t2 = B(I+3)

! ! A(I+2) = t3 + t2

! ENDDO


