COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar

Department of Computer Science
Rice University

{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 15 24 October 2013

Acknowledgments

* Slides from previous offerings of COMP 515 by Prof. Ken
Kennedy

—http://www.cs.rice.edu/~ken/comp515/
* POPL 1996 tutorial by Krishna Palem & Vivek Sarkar

Control Dependences

Chapter 7

Control Dependences

* Constraints posed by control flow

DO 100 T =1, N

Sz 01 Sy

S, IF (A(I-1).GT. 0.0) GO TO 100
s, A(I) = A(I) + B(I)*C

100 CONTINUE

If we vectorize by...

S, A(1l:N) = A(1:N) + B(1:N)*C
DO 100 I =1, N
S, IF (A(I-1).GT. 0.0) GO TO 100

100 CONTINUE
..we get the wrong answer
* We are missing dependences
* There is a dependence from S; to S, - a control dependence

Control Dependences

* Two strategies to deal with control dependences:

—If-conversion: expose by converting control dependences to data
dependences. Used for vectorization

- Also supported in SIMT hardware (e.g., GPGPUs) which
automatically masks out statements with control conditions =
false

— Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

If-conversion

* Underlying Idea: Convert statements affected by branches to
conditionally executed statements

DO 100 I = 1, N
s, IF (A(I-1).GT. 0.0) GO TO 100
S, A(I) = A(I) + B(I)*C

100 CONTINUE

can be converted to:

-1).LE. 0.0) A(I) = A(I) + B(I)*C

If-conversion

DO 100 T = 1, N

s, IF (A(I-1).GT. 0.0) GO TO 100
S, A(I) = A(I) + B(I) * C
S, B(I) = B(I) + A(I)

100 CONTINUE

* can be converted to:
DO 100 I =1, N
S, IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
S3 IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I)
100 CONTINUE

* vectorize using the Fortran WHERE statement:
DO 100 I =1, N
S, IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
100 CONTINUE
Sy WHERE (A(0O:N-1).LE. 0.0) B(1l:N) = B(1:N) + A(1l:N)

If-conversion

If-conversion assumes a target notation of guarded execution
in which each statement implicitly contains a logical expression
controlling its execution

S, IF (A(I-1).GT. 0.0) GO TO 100
S, A(I) = A(I) + B(I)*C
100 CONTINUE

with guarded execution instead:

S, M= A(I-1).GT. 0.0
S, IF (.NOT. M) A(I) = A(I) + B(I)*C
100 CONTINUE

Branch Classification

* Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

* Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

* Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest

— The break and return statements in C are examples of exit
branches, when they occur inside a loop

If-conversion

* If-conversion is a composition of two different
transformations:

1. Branch relocation
2. Branch removal

Branch removal for If-conversion

* Basic idea:
—Make a pass through the program.

— Maintain a Boolean expression cc that represents the condition that
must be true for the current expression to be executed

—On encountering a branch, conjoin the controlling expression into cc

—On encountering a target of a branch, its controlling expression is
disjoined into cc

11

Branch Removal: Forward Branches

* Remove forward branches by inserting appropriate guards

DO 100 I = 1,N
C, IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10

C, IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10

60 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

ENDDO
==>
DO 100 I = 1,
ml = A(I).GT.10
20 IF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10
00 IF(.NOT.ml1l.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I)
80 IF(.NOT.ml.AND..NOT.m2.0R.m1.0R..NOT.ml
AND.m2) B(I) = A(I) - 5

5 &
12

Branch Removal: Forward Branches

* We can simplify to:
DO 100 I = 1,N
ml = A(I).GT.10

20 IF(.NOT.ml) A(I) = A(I) + 10
F(.NOT.ml) m2 = B(I).GT.10
40 IF (.NOT.ml.AND..NOT.m2)
B(I) = B(I) + 10
60 IF (ml.OR..NOT.m2)

A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO

and then vectorize to:

ml(l:N) = A(1:N).GT.10
20 WHERE (.NOT.ml(1:N)) A(1l:N) = A(l:N) + 10
WHERE (.NOT.m1 (1:N)) m2(1:N) = B(1l:N).GT.10
40 WHERE (.NOT.ml (1:N).AND..NOT.m2 (1:N))
B(1:N) = B(1l:N) + 10
60 WHERE (ml (1:N).OR..NOT.m2 (1:N))

80 B(l:N) = A(1:N) - 5 ig

Removal of Forward Branches: Correctness

* To show correctness we must establish:

—the guard for statement instance in the new program is true if and
only if the corresponding statement in the old program is executed,

- unless the statement has been introduced by the compiler to
capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

—the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

— Any expression with side effects is evaluated exactly as many times
in the new program as in the old program

14

Control Flow Graph Definition (Recap)

A control flow graph CFG = (N, E.,T.) consists of

e N., a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow i.e
a basic block.

e . C N.Xx N.x Labels, a set of labeled edges.

e 7., a node type mapping. T.(n) identifies the type of node
n as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node and a
unique STOP node, and that for any node N in CFG, there
exist directed paths from START to N and from N to STOP.

15

Control Flow Graph: Example

F
do {
S1;
if (C1) continue;
do {
S2;
} while (C2);
S3;
} while (C3);
CONTROL FLOW GRAPH

16

Workbook

|dentify the predicated instructions
and enumerate the relationship
between predicated form and the

Enumerate all data dependencies

po 100 1T = 1,N
C, IF (A(I).GT.10) GO TO 60 1) Construct CFG
20 A(I) = A(I) + 10 2) List basic blocks which are maximal
c, IF (B(I).GT.10) GO TO 80 segments without control flow
10 B(I) = B(I) + 10 3) Write out all the data (.jepender)ci(.-:'s.
Note: data dependencies are within a
60 A(I) = B(I) + A(I) ,
basic block.
80 B(I) = A(I) - 5
ENDDO —
A Predicated instruction has the following form which converts
If(pr=true) go to s2
s1
into
If(pr=false) s1
If(pr=true | pr=false) s2
po 100 1 = 1,N —
ml = A(I).GT.10
20 IF (.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10 i :
60 IF (.NOT.ml.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I) non-predicated form.
80 IF (.NOT.ml.AND..NOT.m2.0R.ml.OR..NOT.ml :
.AND.m2) B(I) = A(I) - 5 again?
ENDDO —

17

