COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar

Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 20 10 November, 2011

Acknowledgments

» Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers. Vivek Sarkar. IBM Journal of
Research and Development, 41(3), May 1997.

—Special thanks to Ray Ellersick, Roy Ju, Paula Newman, John
Ng, Khoa Nguyen, Jin-Fan Shaw, Radhika Thekkath and other
contributors to the design and implementation of the ASTI
transformer at IBM Santa Teresa Laboratory.

« POPL 1996 tutorial on “Code Optimization in Modern
Compilers”, K.V. Palem, V. Sarkar, Jan 1996

Memory Hierarchies in Computer Systems

Ideally one would desire an

indefinitely large memory ca-

pacity ... We are ... forced

to recognize the possibility

of constructing a hierarchy

of memories, each of which

has greater capacity than the

preceding but which is less

quickly accessible.

— A. W. Burks, H. H. Gold-

stine, and J. von Neumann

(1946).

Principle of Locality

Programs tend to reuse data and instructions they have used

recently:

1. temporal locality — if an item is referenced, it will tend to
be referenced again soon

2. spatial locality — if an item is referenced, nearby items will

tend to be referenced soon

90/10 rule for instruction locality — an average program
spends 90% of its execution in only 10% of the code

Caches

e cache = level of memory hierarchy between CPU and main
memory

e block = unit of data that can be stored in cache (also
called a cache line)

e 2" = number of blocks in cache

o 2¢ = degree of associativity = number of blocks in a set

e 25 = number of sets in cache (note that 2% x 2¢ = 2n)
d=0,s=n = cache is direct mapped
d=n,s =0 = cacheis fully associative

e 2> = number of words (data elements) in a block

How do caches work?

e hit = memory access that is found in cache
e Miss = memory access that is not found in cache

e replacement policy = strategy for determining which (valid)
block in the set should be replaced

Sources of Cache Misses

Intuitively, a cache miss can be classified as follows [Hill '87]:

1. compulsory miss = first access to a block during program
execution

2. capacity miss = subsequent access to a block, after the
block had been replaced due to cache size limitation (can
be avoided by increasing number of sets)

3. collision miss = subsequent access to a block, after the
block had been replaced due to set size limitation (can be
avoided by increasing degree of associativity)

An optimizing compiler can reduce all three kinds of cache
misses!

Caching the Page Table: Translation-Lookaside Buffers
(TLBs)

e Page table for virtual—real address translation is stored in
main memory
e TLB is like a cache for the page table:
— hit = virtual—real address translation for memory access
was found in TLB
— miss = translation was not found in TLB, and had to be
retrieved from page table
e [LB miss penalties are larger than cache miss penalities
= it is important to take TLB into account in locality
optimizations performed by the compiler

Goals of Compile-time Cache Usage Estimation

e Estimate cache effectiveness so as to guide compile-time
selection of program transformations

e Consider realistic cache models: block size > 1, set
associativity

e Solution should be efficient: estimation time should be
independent of number of loop iterations, array dimension
Sizes, cache size

Exact solution is too hard
= seek good approximations/bounds

Identifying Loops that carry Cache Block Reuse

Two approaches:

1. Count number of blocks accessed

[Ferrante, Sarkar, Thrash '91] :
Let DB(L,n) = number of distinct cache blocks accessed

by n consecutive iterations of loop L
Loop L carries cache block reuse if DB(L,n) <nx DB(L,1)

for some 1 < n < # iterations of L

2. Compute reuse-vectors [Wolf, Lam '91]:
Loop L carries reuse if its basis vector 7 is included in the

reuse vector space for the loop body

In this tutorial, we will focus on approach # 1.

General Approach for Compile-time Cache Usage
Estimation

e Estimate # distinct words (DW) accessed by a single array
reference

e Estimate # distinct blocks (DB) accessed by a single array
reference

e Estimate # distinct words (DW) accessed by multiple array
references

e Estimate # distinct blocks (DB) accessed by multiple array
references

e Adjust estimates to account for collision misses that occur
due to limited associativity

Assumptions

e LOoops are normalized to step = +1; we define LB; and UB;
to be the lower and upper bound expressions of loop ¢

e Array subscript expressions are affine functions of loop
index variables

e Only consider data accesses (for these cost functions)

Estimating DW for a single array reference

Sometimes it is obvious:
DO 10 1 = 1, 100
10 A(i) = A(i) + 5 ==> DW = 100
Sometimes it is not so obvious:
DO 10 1 =1, 8
DO 10 j =1, 5

10 A(6*i+9%j-7) = 5 ==> DW = 25

e.g. iteration (1 =1,5=3) and (i = 4,5 = 1) both access the
same word, A(26)

Estimating DW for a single unidimensional array reference

Upper bound analysis:

e Consider array reference A(f(i1,...,%4)) in loops i1,...,1yp,
such that f(i1,...,ip) = ag + XF_q axiy

e Compute fl° and f*, lower and upper bounds for f, using
Banerjee's inequality [Banerjee '88] (for example)

e Compute g = ged(|ai], ..., |ay])

(fhi—floy
g

+1

= DW(f) <

Proof. values taken on by f() must be a subset of
{fo. o+ g, f°+2xg,.... f*}

Upper bound for not-so-obvious example

DO 10 1 =1, 8
DO 10 j =1, 5
10 A(6*i+9%j-7) = b5

f=6i+9j—7

= flo=28, f""=86 ,9=gcd(6,9) =3

(86—8)

= DW(f) <—3

+ 1 =27

Estimating DW for a single multidimensional array
reference

Consider array reference A(f1,..., fm)

(1= £l
DW(f1,..., fm) < H DW (f;) < H (., J +1)

J= J=

NOTE: above bound is too conservative for coupled subscripts
e.g. for A(i,i), we get DW < (UB;—LB;+ 1) x(UB; — LB;+ 1)

SOLUTION: linearize subscript expressions for all coupled
dimensions

e.g. if A has shape A(100,100), linearize A(i,i) to obtain
x (addr (A) + 101xi), which results in the bound

DW < (UB;,—LB;+ 1)

Estimating DB for a single array reference, A(f)

1. Sparse stride bound:

DB(f) < DW([f)
Example: f(i) = 100: = DW(f) < (UB; - LB;+1)

2. Dense stride bound:

ht _ rlo
DB(f)S{(f Qbf)W+1

(2+U B;—2*LB;)
b

Example: f(i) =2i = DW(f) < {] +1

Putting both upper bounds together yields

DPB(f) < min(DW(f), | " lo)] +1)

2b

fhi_flo) (fhz'_flo)
21)

< min<(7 + 1, —|—1>

Estimating DB for a single multidimensional array
reference (Example)

Assume block size 2° = 16 words:

real*8 c(201,301) DB(2i+1) <
. 201 — 3
DO j =1, 100 min(100, {(G)-‘ +1) =14
DO i = 1, 100

DW (3§ — 2) = 100

c(2%i+1,3%j-2)
= DB(2:+4+ 1,37 —2) <1400

ENDDDO
ENDDO (exact value of DB(2i¢+1,35—2) is 1337
or 1338 for above example)

Estimating DW for multiple array references (simple
solutions)

1. ignore group reuse
= DW({f1,...,fk}) < DW(f1) + ...+ DW(fk)

2. equivalence class approach:

e partition {f1,..., fk} into equivalence classes
{Cq,...,C;}, such that C; = {ffi"”’f%@'l} (a common
approach is to partition according to uniformly generated
array references [Gallivan et al '88])

e assume 100% reuse within a class and 0% reuse among
classes

= DW({f1,..., fk}) = Xl_, DW ()

Estimating DW for multiple array references (Example)

DOi=1, 5

. A(3%i) ... A(2%i+2) ...

ENDDO

f1=3i J
3

f2 =2i42

DW({f1,f2})

4

v

5

Vv

6

v

(LO)

7 8 9 10 11

v v

Vv

12

Vv

(HI)

Vv

13 14 15

DW(f1) + DW(f2) — overlap(f1, f2)
54+45—-2=8

Estimating DW for multiple array references

Define test(f1, f2) = 1 if and only if subscript expressions f1
and f2 can overlap (regardless of loop bounds); test can be
computed using the GCD data dependence test.

Upper bound for DW ({f1, f2}):
DW({f1,f2}) = DW(f1)+ DW(§2) — overlap(f1, f2)

ht _ rqlo ht __ gnlo
. ((fl f1)+1>_|_<(f2 f2 >+1>
gl g2

(HI—LO)
lem(gl,92)

—test(f1, f2) x (+ 1)

Example of Set Conflicts

% miss
real*8 A(N,N) ratio
do 10 i =1, N 1905)*) *) £
do 10 j =1, N o ¥ *
do 10 k =1, N 28) |

10 . . . A(i,k) 50
Simulate A(i,k) reference 38
for cache parameters, 20 = 20l
16, 2° =32, 24 =4, and for 1Q .
96 < N =160 100 TI0 120 1307140 150160

N

Set conflict analysis identifies the main outlying points,
N =96, 102, 103, 114, 118, 122, 128, 146, 159, 160

21

Dealing with Low Cache Utilization Efficiency

What should we do when the cache utilization efficiency is low?

Possible solutions:

1. Pad array dimension size to improve efficiency, if legal to do
SO

2. Copy into temporary array with larger dimension size, if
legal and efficient to do so

3. Adjust nominal (effective) cache size to reflect actual
utilization efficiency in compiler cost functions

22

Using Effective Cache Size to Estimate # Misses for a
Direct-Mapped (or Set-Associative) Cache

Summary of approach:

e Compute m = # innermost loops in locality group
assuming fully-associative cache

e For each array variable, A, set n,,;,(A) = minimum stride
efficiency value across m innermost loops

o Set effective cache size S" = |14y /minS], WHere 04,0 /minis
the average of all 1,,;n,(A)

e Do locality analysis assuming a fully associative cache of
size S’

23

Selection of Tile Sizes — a constrained optimization
problem

Objective function: Select tile sizes t1,...,t; SO as to
iniMmi S COSTtotal
minimize F(t1, ... ,tp) = x . iy

Constraints:
e Each tile size must be in the range 1 <t < Uboundj..

 DL;yiui(t1, ... ,tp) < ECS. The number of distinct cache
lines accessed in a tile must not exceed the effective cache
Size.

e DPiyiai(t1, ... ,tp) < ETS. The number of distinct virtual
pages accessed in a tile must not exceed the effective TLB
Size.

Constant-time solution for two loops. For N > 2 loops with
negative slope, search on t; values for (N — 2) loops.

24

Selection of Tile Sizes for Matrix Multiply-Transpose
Example

DLotai(t1,t2,t3) = (0.25t1 +0.75) to 4+ (0.25tp 4+ 0.75) t3 +
(0.25t3 + 0.75) t1

© DL;iai(t1,to,t3) < ECS = 2048 is the active constraint
e Solution returned by algorithm is t; = 50, to = 51, t3 =51
(Note that DL;,;,;(50,51,51) = 2039.25 and

DLy (51,51,51) = 2065.50)

NOTE: in general, tile sizes need not be equal.

25

Transformed Code after Tiling

do bb$_12=1,n,50
do bb$_13=1,n,51
do bb$_14=1,n,51
do i11=MAX0(1,bb$_12) ,MINO(n,49 + bb$_12)
do i2=MAX0(1,bb$_13) ,MINO(n,50 + bb$_13)
do i3=MAX0(1,bb$_14) ,MINO(n,50 + bb$_14),1
a(i1,i2) = a(i1,i2) + b(i2,i3) * c(i3,il)
end do
end do
end do
end do
end do
end do

26

Selection of Unroll Factors

Objective function: Select unroll factors uy,... SO as to
minimize amortized execution time per original iteration

Constraints:

e DFR(ui,...) < EFR. The number of distinct floating-point
references in the unrolled loop body must not exceed the
effective number of floating-point registers available.

e DXR(uq,...) < EXR. The number of distinct fixed-point
references in the unrolled loop body must not exceed the
effective number of fixed-point registers available.

Objective function may not be monotonically nonincreasing
= do an exhaustive enumeration of feasible unroll factors

30

Selection of Unroll Factors for Matrix Multiply-Transpose
Example

To simplify discussion, assume that only benefit of unrolling is
savings of loads of b(i2,i3) and c(i3,il):

ujuz +upuz 1 n 1
uju2u3 u2 uj
UU2 T UTU3 T UU3

Amortized # loads, F(uq,u>,u3)

DFR(u1,up,u3)

Setting DFR(ul,UQ,U3) < 28 yields u1 = 4, up =4, uz3 =1 as
the best solution with DFR(4,4,1) =24 and F(4,4,1) = 0.5
loads/iteration.

31

Preliminary Experimental Results (Multiply-Transpose)

100.0

90.0

80.0

70.0

60.0

User + system execution time (in seconds)

500

40.0

300

200

10.0

00

Performance measurements on a 133MHz PowerPC 604

e 0 OC

ap @@ O

00 DRED)

SO0

o} O
|] |

-Pv -ghot -lessl
XL FORTRAN compiler options

processor for matrix multiply-transpose example.

32

Data Cache Misses

Number of data-cache misses (log scale)

1le+07

1e+06

1e+05

| (4.5¢6)

(4.5e6)

(4.0e6)

(4.6e6)

(2.3e5)

(1.9€5)

-02

-03

-Pk

-Pv -ghot -lesslp2
XL FORTRAN compiler options

33

Conclusions

e \We described how the ASTI transformer automatically
selects high-order transformations for a given target
uNiprocessor.

e Quantitative approach to program optimization is critrical
for delivering robust optimizations across different programs
and target parameters.

e TO the best of our knowledge, the ASTI transformer is the
first system to support automatic selection of the wide
range of transformations described in this paper, using a
cost-based framework.

36

REMINDER: Homework #6 (Written
Assignment)

Read Section 6 (Memory Cost Analysis) of the following paper discussed in today's
lecture, especially the partial derivative analysis on pg 15 (printed page 247):

» Automatic Selection of High Order Transformations in the IBM XL Fortran Compilers. Vivek Sarkar. IBM Journal of
Research and Development, 41(3), May 1997

1. Compute the memory cost function and partial derivatives for loops I and J in
the following loop nest at the start of Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?
DOI=1,N
DOJT =1, M
A(T+1) = (A(J)+A(T+1))/2
ENDDO
ENDDO

2.Compute the memory cost and partial derivatives for loops I and J in the following
transformed loop nest (after skewing) in Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?
DOI=1,N
DOj=I, M+I-1
A(j-I+2) = (A(j-I+1)+A(j-I+2))/2
ENDDO

ENDDO COMP 515, Fall 2011 (V.Sarkar)

Homework #6 (contd)

* You can make the following simplifying assumptions

—Only calculate memory cost for a single level of cache, and ignore
the TLB

— Assume a cache line size of L = 32B, and an array element size of
8B (real*8)

« Homework due by 5pm on Tuesday, November 15th
« Homework should be turned into Amanda Nokleby, Duncan Hall 3137

« Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else's work as your own. If you use any
material from external sources, you must provide proper attribution.

COMP 515, Fall 2011 (V.Sarkar)

	comp515-lec20-f11-part1
	comp515-lec20-f11-part2
	comp515-lec20-f11-part3
	comp515-lec20-f11-part4

