
Comp 311 
Functional Programming

Eric Allen, Two Sigma Investments 
Robert “Corky” Cartwright, Rice University 
Sağnak Taşırlar, Two Sigma Investments



Abstract Datatypes

abstract class Shape 
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape



Case 1: We Expect Few New 
Functions But Many New Variants 

• This is a case that object-oriented programming handles well 

• Classic example domains: GUI Programming, Productivity 
Apps, Graphics, Games 

• Declare an abstract method in our superclass and provide a 
concrete definition for each sub-class 

a.k.a.,  

The Union Pattern (for the datatype definitions) 

The Template Method Pattern (for the function definitions)



Abstract Datatypes
abstract class Shape {
  def area(): Double
}

case class Circle(radius: Double) extends Shape {
  val pi = 3.14  
  def area() = pi * radius * radius
}

case class Square(side: Double) extends Shape {
  def area() = side * side
}



How Do Abstract Classes Affect 
Our Type Checking Rules?

• When type checking a class definition, ensure that 
all abstract methods declared in the superclass are 
actually defined, with compatible method types 

• When type checking a collection of class 
definitions, ensure that there are no cycles in the 
class hierarchy!



How Do Abstract Classes Affect 
Our Type Checking Rules?

• If a method is called on a receiver whose static 
type is an abstract class, extract an arrow type 
from the declaration (just as with a definition in a 
concrete class) 

expr.area() ↦

Shape.area() ↦

() ! Double



Type Checking Arguments 
to a Method Call

• The static types of an argument might no longer be 
an exact match: 

(Let us set aside the concrete definitions of 
makeLikeMe for awhile)

abstract class Shape {
  def area(): Double
  
  def makeLikeMe(that: Shape): Shape
}



Now Consider a Call to 
Matcher With Concrete Types

Circle(1).makeLikeMe(Circle(2)) ⇒

Circle.makeLikeMe(Circle) ⇒

(Shape ! Shape)(Circle)

And now we are stuck…



Recall The Substitution 
Model of Type Checking

• To type check the application of a function to 
arguments: 

• Reduce the function to an arrow type 

• Reduce the arguments, left to right, to static 
types 

• If the argument types match the corresponding 
parameter types, reduce the application to the 
return type



Relations
• are subsets of tuples 

• reflexive 

• symmetric 

• anti-symmetric 

• total 

• transitive

R ✓ A⇥B

(x, y) 2 R $ (y, x) 2 R 8
x,y2A

(a, a) 2 R 8a2A

(x, y) 2 R ^ (y, x) 2 R ! x = y 8
x,y2A

(x, y) 2 R ^ (y, z) 2 R ! (x, z) 8
x,y,z2A

(x, y) 2 R _ (y, x) 2 R 8
x,y2A



Some binary relations

• A total order (total, transitive, anti-symmetric) 

• A partial order (reflexive, transitive, anti-symmetric) 

• Functions (left covering, right unique)



Hasse Diagram

image credit: wiki article on hasse diagrams



Subtyping
• We need to widen our definition of matching a type to 

include subtyping: 

• A class is a subtype of the class it extends 

• Subtyping is Reflexive:  

A <: A

• Subtyping is Transitive:  

If  A <: B  and  B <: C then  A <: C



Subtyping

• All types are a subtype of type Any 

• Type Nothing is a subtype of all types 

• There is no value with value type Nothing



A scala type hierarchy
Any

Nothing

Shape

Circle
Square

Rectangle

other types

more  
other types



Recall The Substitution 
Model of Type Checking

• To type check the application of a function to 
arguments: 

• Reduce the function to an arrow type 

• Reduce the arguments, left to right, to static 
types 

• If the argument types are subtypes of the 
corresponding parameter types, reduce the 
application to the return type



Applying a Class Method 
Revisited

• To reduce the application of a method: 

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right 

• Find the body of m in C and reduce to that, 
replacing constructor parameters with 
constructor arguments and method parameters 
with method arguments



The Body of m 

• To find the body of method m in type C: 

• Find the definition of m in the body of C, if it exists 

• Otherwise, find the body of m in the immediate 
superclass of C



Overriding Methods
• Our new rules also handle method overriding! 

• Use overriding when: 

• Factoring out a method definition common to several 
variants 

• Suppose several shapes compute their area in the 
same way 

• Augmenting the behavior of classes we do not 
maintain



Overriding Methods

• Scala requires that overriding method definitions 
include the keyword overrides

• Why require this extra keyword?



The Fragile Base Class 
Problem

• Suppose I define a base class Shape 

• Later a client extends Shape with class Triangle 
and defines a private method position to record 
the position of one point of a triangle 

• Yet later, I release a new version of my class Shape 
with a private method position to record the 
position of the center of the shape



The Fragile Base Class 
Problem

• This is an example of accidental overriding 

• The overrides keyword catches the problem 
when the subclass Triangle is recompiled 
against the new version of Shape



Two Occasions to Consider 
Overriding

• The default equals methods on case classes: 

Rational(4,6) equals Rational(2,3)



Two Occasions to Consider 
Overriding

• The default toString methods on case classes: 

Rational(4,6) + Rational(2,3) ↦

Rational(4,3)

What is printed during Interactions is determined by toString



Two Occasions to Consider 
Overriding

• The default toString methods on case classes: 

Rational(4,6) + Rational(2,3) ↦

4/3

What is printed during Interactions is determined by toString



Defining and Overriding 
Methods

• Recall our rule for abstract methods 

• When type checking a class definition, ensure that 
all abstract methods declared in the superclass are 
actually defined, with compatible method types 

• We need to: 

• Augment our rule to mention overriding (this is easy) 

• Clarify “compatible method types”



Defining and Overriding 
Methods

• When type checking a class definition, ensure that: 

• All abstract methods declared in the superclass 
are actually defined, with compatible method 
types 

• The types of all overriding methods are 
compatible with the types of the methods they 
override



Defining and Overriding 
Methods

• When type checking a class definition, ensure that: 

• All abstract methods declared in the superclass 
are actually defined, and their types are 
subtypes of the method types in the 
corresponding declarations 

• The types of all overriding methods are subtypes 
of the method types they override



Arrow Types and Subtyping

• How do we define subtyping on arrow types? 

• Historically this has been a painful source of bugs 
in object-oriented languages



Arrow Types and Subtyping

• The substitution principle of arrow typing: 

• If a function f has type S!T 

and S!T <: U!V 

then f can be safely used in any context 
requiring a function of type U!V



Consider an Example

• So, makeLikeMe has type Shape ! Shape

• We are required to define it in all subclasses of Shape

abstract class Shape {
  def area(): Double
  
  def makeLikeMe(that: Shape): Shape
}



Consider a Calling Context

• What are some parameter types we can safely 
declare for makeLikeMe when defining it in class 
Circle? 

• What are some return types we could safely declare?

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

• Could class Circle define the parameter type of 
makeLikeMe to be Circle? 

// NOT ALLOWED  
def makeLikeMe(that: Circle): Shape = that 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

And now we are stuck…



Consider a Calling Context

• Could class Circle define the parameter type of 
makeLikeMe to be Any? 

// This abides by our substitution principle
def makeLikeMe(that: Any): Shape = this 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14



Consider a Calling Context

• Could class Circle define the return type of 
makeLikeMe to be Any? 

// NOT ALLOWED  
def makeLikeMe(that: Any): Any = “what’s up?” 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

“what’s up?”.area ↦

And now we are stuck…



Consider a Calling Context

• Could class Circle define the return type of 
makeLikeMe to be Circle? 

// This abides by our substitution principle
def makeLikeMe(that: Any): Circle = this 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14



Subtyping for Arrow Types

• A type S!T is a subtype of U!V iff 

• U is a subtype of S 

• T is a subtype of V

• We say that arrow types are contravariant in their 
parameter type and covariant in their return type



A Limitation on Subtyping of 
Method Types in Scala

• Parameter types of overriding methods must match 
exactly in Scala 

• This restriction is shared with Java and is a 
limitation of the JVM 

• We will see other uses of arrow types in Scala 
where this restriction is not in place



Why Methods?
• Remember we are in Case 1: We Expect Few New 

Functions But Many New Variants 

• How do methods help with this case? 

• All functions we support are declared in our abstract 
class 

• New variants can be added without changing old 
code:  

• Simply implement all the declared methods



Disadvantages of Methods

• If new functionality is added, every class definition 
must be modified to include it



Throwing And 
Catching Exceptions



We Can Throw and Catch 
Exceptions as in Java

  def assertConstructorFail(m:Int, n:Int) = {
    try {
      Rational(m,n)
      fail()
    }
    catch {
      case e: IllegalArgumentException => {
      }
    }
  }



Syntax For Try/Catch

   try expr
    catch {
      case Pattern => expr

…
    }



Syntax For Throw

throw expr



Static Semantics For Throw
If e has static type T and  

T <: Throwable

then 

 throw e

has static type 

Nothing



Static Semantics For Try/
Catch

• Given an expression e: 

• Where expr0: T0, expr1: T1, …, exprN: TN,

• The type of e is the least type T such that: 

T0 <: T, T1 <: T,…,TN <: T

   try expr0
    catch {
      case Pattern => expr1

…
      case Pattern => exprN
    }



Static Semantics For Try/
Catch

• The type of e is the least type T such that: 

T0 <: T, T1 <: T,…,TN <: T

• Note that we can now use this approach to go back and 
define better static typing rules for if-else and match 
expressions



Dynamic Semantics For 
Throw

• To explain the semantics of throw, we must introduce new 
terminology 

• Let the continuation of an expression e refer to all that 
remains to be done in a computation after e is reduced 

• We can think of a continuation as an expression with a 
“hole” in it, corresponding to e 

• Equivalently, we can think of a continuation as function  
that takes a parameter, corresponding to the result of 
evaluating e



Example Continuation

matcher(Circle(1), Square(1))



Example Continuation

matcher(Circle(1), Square(1))

Let this be our expression e



Example Continuation

matcher(         , Square(1))

Then this is the continuation of e



Example Continuation

matcher(Circle(1), Square(1))

Once e is reduce to a value, the box is filled in, 
and the continuation can be reduced



Reducing a Throw 
Expression

• To reduce a throw expression: 

• Reduce e to a value v 

• Replace the continuation of the throw expression 
with the special expression throw v

throw e



Reducing a Try/Catch
• To reduce a try/catch expression: 

   try expr0
    catch {
      case Pattern => expr1

…
      case Pattern => exprN
    }



Reducing a Try/Catch
• Set aside the continuation C of the try/catch 

• Reduce the body of the try in a special continuation D 

• If D reduces to throw v: 

• Restore the continuation C 

• Try matching v against each pattern in the catch clause 

• If a match is found, evaluate the body of the matching case 

• Otherwise, reduce to throw v

• If D reduces to w, restore continuation C and reduce the try/catch to w



Consider Our Motivating 
Test Helper Function

  def assertConstructorFail(m:Int, n:Int) = {
    try {
      Rational(m,n)
      fail()
    }
    catch {
      case e: IllegalArgumentException => {
      }
    }
  }



We Call Our Function In An 
Enclosing Context

enclosingProgram (
   assertConstructorFail(1,0)
)
↦
enclosingProgram (
    try { 
      {require(0 != 0); Rational(1,0)} 
      fail() 
    }
    catch { 
      case e: IllegalArgumentException => {}
    }
)
↦



enclosingProgram (
    try { 
      {require(0 != 0); Rational(1,0)} 
      fail() 
    }
    catch { 
      case e: IllegalArgumentException => {}
    }
)
↦

{
  {require(0 != 0); Rational(1,0)} 
  fail() 
}

↦

Continuation C

D

C



{
  {require(0 != 0); Rational(1,0)} 
  fail() 
}

↦

{
  {throw IllegalArgumentException; Rational(1,0)} 
  fail() 
}

↦

throw IllegalArgumentException

↦

C

C

C



throw IllegalArgumentException
↦
enclosingProgram (
    try { 
      throw IllegalArgumentException
    }
    catch { 
      case e: IllegalArgumentException => {}
    }
)
↦
enclosingProgram (
    {}
)
↦
enclosingProgram ()

C



throw IllegalArgumentException
↦
enclosingProgram (
    try { 
      throw IllegalArgumentException
    }
    catch { 
      case e: AssertionError => {}
    }
)
↦
enclosingProgram (
    throw IllegalArgumentException
)
↦
throw IllegalArgumentException

C

What If Our Catch Clause  
Does Not Match?



Continuations Are A Recurrent 
Concept in Computer Science

• Distributed computing 

• Parallel computing 

• Operating systems 

• A unified approach to control flow



The Assert Function
assert: Boolean ! Unit

assert: (Boolean, String) ! Unit

• Note that the function is overloaded 

• Use inside functions to ensure properties hold 

• Do not assert unless you actually believe the 
assertion is true!



Type Checking Overloaded 
Functions

• For each overloaded declaration of a function f: 

• Provide that declaration with a fresh name, in a 
manner that respects method overriding 

abstract class Shape {
  def area(): Double

  def makeLikeMe(that: Int): Shape
  def makeLikeMe(that: Shape): Shape
}



Type Checking Overloaded 
Functions

• For each overloaded declaration of a function f: 

• Provide that declaration with a fresh name, in a 
manner that respects method overriding 

abstract class Shape {
  def area(): Double

  def makeLikeMe$Int(that: Int): Shape
  def makeLikeMe$Shape(that: Shape): Shape
}



Type Checking Overloaded 
Functions

• For each overloaded declaration of a function f: 

• Provide that declaration with a fresh name, in a 
manner that respects method overriding 

case class Circle(radius: Int) {
  val pi = 3.14
  def area(): Double = pi * r * r

  def makeLikeMe$Int(that: Int): Shape = this
  def makeLikeMe$Shape(that: Shape): Shape = that
}



Type Checking an 
Overloaded Function

• When an overloaded function is called on an argument 
expression e with type T: 

• If there is a unique matching function definition 
whose parameter type is: 

• A supertype of T 

• A subtype of all other matching definitions 

• Replace the function name with the unambiguous 
name for that unique function



Reducing an Overloaded 
Function Definition

• Because of the rewrite during type checking, our 
reduction rules need no modification! 


