
COMP 311 HOMEWORK 1: EXTENDING THE NUMERIC TOWER

Due Thursday, September 10 at 2:30pm
NO LATE SUBMISSIONS

Although the numeric types Int and Double are useful for many computational tasks, there are others
for which they are ill-suited. In this homework assignment, we will make use of compound and abstract
datatypes in Scala to define several new datatypes inspired by algebra and scientific notation.

Please submit your homework via the turnin system, in a folder named hw 1 with three files:

Rationals.scala, Intervals.scala, Physics.scala

containing your solutions to the three sections of this homework, along with their three test files:

RationalsTest.scala, IntervalsTest.scala, PhysicsTest.scala.

For each section, please turn in only your final program resulting from completion of the section.

1. The Rationals

In mathematics, the Rational Numbers (denoted by the symbol Q) are defined as equivalence classes
of pairs of integers. We can use pairs of the fixed sized type Int to model a fixed size type Rational.
Of course, there are many pairs of integers that denote mathematically equivalent rational values, such
as 1/2 and 2/4 and even −1/2 and 1/− 2.

(1) Define a case class Rational. Your class should include methods that support the following
operations:

• The standard algebraic operations addition, multiplication, subtraction, and division
among pairs of Rationals, denoting these operators with the standard symbols +,-,*,/

• Raising a Rational to an integer exponent, using the operator ** to denote exponentiation.
(We follow Fortran tradition and choose the symbol ** for exponentiation rather than the
ASCII symbol ^ because Scala defines the precedence of ^ as lower than that of **, which
can be misleading in mathematical formulas. The precedence of ^ was chosen because of
its use as the bitwise exclusive or operator on Int values, a notation borrowed from Java,
which borrowed from C.)

Be sure to follow the Design Recipe discussed in class, along with standard function templates
for algebraic functions, conditional functions, and functions over compound data. Also be sure
to include adequate tests to convince yourself of the correctness of your program, especially
along boundary cases.

(2) The greatest common divisor (GCD) of two integers (at least one of which is not zero) is
defined as the largest integer that divides both with a remainder of zero. The most obvious
way to compute a GCD is to find the prime factorizations of each number and find their largest
common subsequence of primes. But this approach is expensive and even intractable for large
numbers.

Fortunately, Euclid discovered a more efficient algorithm in the Elements (c. 300 B.C.). The
Euclidean Algorithm is one of the oldest numeric algorithms still in common use. Euclid’s
approach relies on the observation that the GCD of two numbers does not change if the larger
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number is replaced with the difference of the larger and smaller numbers. The algorithm is
defined by the following equations:

gcd(a, 0) = a

gcd(a, b) = gcd(b, a mod b)

The mathematical operator mod returns the modulus of two Int values. For positive integers,
this operation is equivalent to the remainder of integer division, which is denoted over Int

values in Scala by the operator %.

(a) Define a singleton object Arithmetic to hold your definitions of algebraic functions.

(b) In this new object, define a function gcd, which takes two positive values of type Int and
returns their GCD.

(c) Define a new method reduce on class Rational that takes no arguments and returns a
mathematically equivalent value of type Rational in which:

(i) The number is reduced to lowest terms

(ii) The denominator is positive

For every pair m,n of mathematically equivalent Rational values, the result of calling
reduce on either of these values should be structurally identical, which can be checked on
instances of case classes with the Scala operator == or the method equals.

(d) Define a new binary equivalence method EQ which returns true iff its arguments are
mathematically equivalent.

(e) Similarly, define binary methods LT, GT, LE, GE, which compute the Rational operations
<,>,≤,≥ respectively.

(f) Modify your definitions of the algebraic operators on Rationals (+,-,*,/,**) so that the
result of each operation is reduced to lowest terms.

2. Interval Arithmetic

In scientific measurement, we include upper and lower bounds on the precision of a measurement.
For example, consider the mass of the Higgs Boson as measured by the Large Hadron Collider at
CERN:

126± 1 GeV/c2

There is a rich collection of work defining computation with closed intervals of the Reals, delimited
by pairs of floating point numbers denoting the lower and upper bounds of a measured value. In the
example above, the Higgs mass would be represented by the interval:

[125, 127] GeV/c2

Arithmetic operations on intervals over the Real numbers R are defined as follows:

[a, b] + [c, d] = [a + c, b + d]

[a, b]− [c, d] = [a− d, b− c]

[a, b] · [c, d] = [min(ac.ad, bc, bd),max(ac, ad, bc, bd)]

[a, b]

[c, d]
= [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)] where 0 6∈ [c, d]

Division by an interval that contains zero is undefined.
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A computation on two intervals must result in an interval that contains the exact real value of the
underlying mathematical operation. Endpoints of a new interval must be rounded conservatively so
as to ensure that the exact value is contained despite approximations introduced due to rounding. To
simplify rounding considerations, we will work with intervals that have Rationals as endpoints rather
than Doubles.

Because an interval denotes an unknown real value bounded by its endpoints, mathematical compar-
ison becomes more complicated. We must distinguish between cases where we are certain that the
underlying real value is ordered with the respect to another, and cases where it is possible that the
two underlying values have a particular ordering.

(1) Define a case class Interval with fields left and right of type Rational. The value of field
left should always be less than or equal to the value of field right.

(2) Include definitions for the algebraic operators (+,-,*,/,**). As before, you need only support
integer exponents.

(3) Define the following comparison methods on intervals:

(a) PEQ indicating that two intervals denote possibly equal values.

(b) LT indicating that one interval denotes a value that is necessarily less than another.

(c) GT indicating that one interval denotes a value that is necessarily greater than another.

3. Computing With Bounded Precision

We have now built the machinery to perform scientific calculations with strictly bounded precision.
Let’s use our machinery to calculate something!

Ever since the (dwarf) planet Pluto was discovered in 1930, its size has been hotly debated. This
debate was put to rest on July 14, 2015 by the New Horizons spacecraft, which measured Pluto’s
diameter to be:

2, 372± 2 km

In contrast, the mass of Pluto (measured by its gravitational effect on other heavenly bodies) has long
been known with precision. In 2004, The Institute of Applied Astronomy of the Russian Academy of
Sciences published the EPM 2004 ephemeris, a very precise measurement of the mass of all planets
and large bodies in the Solar System, compiling data collected over 90 years. The measurement of the
mass of Pluto in this publication was:

1.304± 0.005× 1022 kg

(1) Define a singleton object Physics that contains a function volume, which takes as input an
Interval denoting the diameter of a ball (be sure to document the physical units expected of
your parameters!). Your function should return an Interval denoting the volume of the ball.

(2) Now define a function density that takes a weight and a volume (as intervals, with expectations
of units documented) and returns and interval denoting the mean density of the ball.

(3) Using your newly defined functions and the measurements provided above, define a constant
densityOfPluto in object Physics to be an interval containing the true density of Pluto. (It
is permissible to approximate the shape of Pluto to be a perfect sphere.)


