Comp 311 Functional Programming

Eric Allen, PhD Vice President, Engineering Two Sigma Investments, LLC

Doubles (Continued)

± m 2^e

- $1 \le m \le 2^{53} 1$
- $-2^{10}-53+3 \le e \le 2^{10}-53$
- -1074 ≤ e ≤ 971

Representations of Doubles

 Many quantities have more than one representation in this format:

 1024×2^{500}

 512×2^{501}

Distances Between Doubles

- The distance between adjacent values of type Double is not constant
 - The values are most dense near zero
 - They grow sparser exponentially as one moves away from zero

Operations and Rounding

- Arithmetic operations round to the closest representable value
 - Ties are broken by choosing the value with the smaller absolute value
 - We can think of each value of type Double as denoting the range of real numbers that are closest to it

Overflow with Doubles

 Computations on Doubles that result in values larger than the largest finite Double are represented with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

 Computations on Doubles that result in values with magnitudes smaller than the smallest non-zero Double are represented with special values:

Division By Zero

 Division of a non-zero finite value by a zero value results in an infinite value:

1.0 / 0.0 → Double.PositiveInfinity

1.0 / -0.0 → Double.NegativeInfinity

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 → Double.PositiveInfinity

Division By Zero

 Division of a zero value by a zero value results in another special value NaN (for "Not a Number"):

$0.0 / 0.0 \mapsto Double.NaN$

 $-0.0 / 0.0 \mapsto \text{Double.NaN}$

Doubles Break Common Algebraic Properties

• Addition is not associative:

$$0.1 + (0.2 + 0.3) \mapsto 0.6$$

Doubles Break Common Algebraic Properties

- Equality is not reflexive:
 Double.NaN != Double.NaN
- Multiplication does not distribute over addition:

 $100.0 * 0.1 + 100.0 * 0.2 \mapsto$ 30.0

Morals of Floating Point Computation

- Avoid floating point computation whenever you need to compute precise numeric values (such as monetary values)
- Use floating point values only when calculating with inexact measurements over a range larger than can be represented with precise arithmetic

Morals of Floating Point Computation

- Try to bound the margin of error in your calculation
- Don't test for equality directly
 - Instead of writing:

• We want to write something like:

Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

Computing Conditional Expressions

We used a slight of hand when presenting if expressions

if (e1) e2 else e3

 According to the substitution model of computation, how do we compute the value of this expression?

Computing Conditional Expressions

if (e1) e2 else e3

- First we compute $e1 \mapsto v1$, then $e2 \mapsto v2$, then $e3 \mapsto v3$
- If v1 is true then reduce to v2
- Otherwise reduce to v3

But Consider the Following Expression

if (false) 1/0 else 3

This expression should reduce to 3

New Rule for Conditional Expressions

- To reduce an if expression:
 - Reduce the **test** clause
 - If the test clause reduces to true, reduce the then clause
 - Otherwise, reduce the else clause

What are The Exceptional Events in Core Scala?

- A "division by zero" error on Ints (but not Doubles)
- We run out of some finite resource
- The computation never stops
- The computation keeps getting larger

Programming With Intention

Programming With Intention

- There is far too much broken software in the world...
- The number of mission critical domains affected by programming is increasing
 - Space exploration and satellites, defense, medical devices, automobiles, finance

Programming With Intention

- Static types help us reduce some errors by restricting the potential results of a computation
- We still need to defend against exceptional events
- And we need to defend against silent errors
 - Silent errors are actually our most insidious risk

Defending Against Exceptional Conditions

- With division on we Ints, we should ensure that the divisor is non-zero
- We will return to guarding against exhaustion of finite resources later
 - For now, assume we have sufficient resources, provided that our time and space requirements have *some* bound

Defending Against Unbounded Resource Consumption and Silent Failures

- We've discussed some of the caveats when programming with Ints and Doubles
- To further defend against such errors, we will make use of a *design recipe*

The Design Recipe

The Design Recipe

- **Analysis**: What are the objects in the problem domain? What data types we will use to represent them?
- **Contract**: What is name of our functions and their parameters? What are the requirements of the data they consume and produce? What is the meaning of what our program computes?
- Repeat until we are confident in our program's correctness
 - Write some **tests**
 - Sketch a function **template**
 - **Define** the function

Example: Calculating Profit for a Movie Theater (HtDP 2001)

- The owner of a movie theater collected the following data:
 - At \$5.00 per ticket, 120 people attend a performance
 - Decreasing by \$0.10 increases attendance by 15 people
 - A performance costs \$180 plus \$0.04 per attendee
 - Define a function to calculate the exact relationship between ticket price and profit

Analysis

- We are working with monetary values and counts of attendees
- Attendees are whole numbers
- To avoid rounding errors, we will use Ints for monetary values
- Therefore all monetary values will be represented in cents

Analysis

- We need to compute *profit*
- Profit is calculated as *revenue cost*
- Cost is dependent on attendance

Contracts

- First, define a **contract** for our function:
 - What is the name of the function?
 - What considerations should go into the names we choose?
 - What are the static types of the arguments that our function consumes?
 - What other constraints must hold on the values it consumes?
 - What is the static type of its result?
 - What else does it ensure about its result?

Contract for Attendance

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)

} ensuring (_ >= 0)

...

Syntax and Typing of Contracts

def fnName(arg0: type0, ..., argk: typek):returnType = {

require(expr)

expr

} ensuring (expr)

The static types of the require and ensuring clauses must be of type Boolean

Statement of Purpose

- Use a comment to provide a brief statement of the meaning of the function
- Well chosen names for functions and parameters are often some of the best documentation!

Statement of Purpose for Attendance

/**

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance

*/

...

- def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 - } ensuring (_ >= 0)

Write Some Tests

120 == attendance(500)

We can think of tests as being analogous to constraint equations in algebra.

Sketch a Function Template

/**

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance
 */
- def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)

arithmetic expression

} ensuring (_ >= 0)

Defining Functions

- Design Principle: "Keep It Simple, Stupid"
- Given the tests we've written so far and the template we've sketched, write the simplest thing that could possibly work
- Keeping the definition simple will:
 - Force us to include adequate test coverage
 - Help to keep us from over-engineering

Define The Function

/**

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance
- */
- def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120
- } ensuring (_ >= 0)

We Need More Tests

120 == attendance(500)135 == attendance(490)

Redefinition (Attempt 1)

/**

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance
- */
- def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120 + (500 ticketPrice) * (15 / 10)
- } ensuring (_ >= 0)

We Need More Tests

120 == attendance(500)135 == attendance(490)

But Now Some Tests Fail

120 == attendance(500)135 == attendance(490)

Division With Ints

attendance(490) \mapsto

 $120 + (500 - 490) * (15 / 10) \mapsto$

 $120 + 10 * (15 / 10) \mapsto$

 $120 + 10 * (15 / 10) \mapsto$

120 + 10 ***** 1 ↔

120 + 10 ↔

Redefinition (Attempt 2)

/**

* /

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance
- def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120 + ((500 ticketPrice) * 3) / 2
- } ensuring (_ >= 0)

Now Our Two Tests Succeed

120 == attendance(500)135 == attendance(490)

Let's Add Harder Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Now our **ensuring** clause fails!

Redefinition (Attempt 3)

/**

- * Given a ticketPrice in cents,
- * returns the number of people expected
- * to attend a performance

*/

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring (_ >= 0)

(To Do: Apply Our Design Recipe to max)

def max(m: Int, n: Int) = if (m >= n) m else n

Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Let's Add More Tests

- 120 == attendance(500)
- 135 == attendance(490)
- 0 == attendance(1000)
- 0 == attendance(Int.MaxValue)

Overflow Does Not Appear To Be a Problem...

- 120 == attendance(500)
- 135 == attendance(490)
- 0 == attendance(1000)
- 0 == attendance(Int.MaxValue)

Or Does It...

attendance(2147483647) \mapsto

 $max(0, 120 + ((500 - 2147483647) * 3) / 2) \rightarrow$

 $max(0, 120 + (-2147483147 * 3) / 2) \rightarrow$

 $max(0, 120 + -2147482145 / 2) \mapsto$

 $max(0, 120 + -1073741072) \mapsto$

 $max(0, -1073740952) \mapsto$

if (0 >= -1073740952) 0 else -1073740952 →

Bounding Cost of Attendance

- We can determine an exact bound for the maximum allowable parameter to attendance:
 - For each subexpression, solve for the parameter values that would result in overflow:
 - (500 ticketPrice) > Int.MaxValue
 - (500 ticketPrice) < Int.MinValue

etc.

Bounding Values Based on Domain Knowledge

- We can also find appropriate bounds by considering the range of values required by our problem domain
 - Often, these bounds will be much tighter
- In our example, we can see from our formula that attendance is zero whenever the cost of a ticket is \$5.80 or above
- We can also see that even free tickets achieve attendance of only 870 people

Bounding Cost of Attendance

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring (_ >= 0)

Now We Should Remove Our Test on Int.MaxValue

120 == attendance(500)

135 == attendance(490)

0 == attendance(1000)

0 == attendance(Int.MaxValue)

Add Let's Add Some More Tests While We're At It

- 120 == attendance(500)
- 135 == attendance(490)
- 0 == attendance(1000)
- 0 == attendance(580)
- 2 == attendance(579)
- 870 = attendance(0)

Now We Can Apply the Design Recipe to Our Remaining Functions

```
/**
```

```
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
  require (ticketPrice >= 0 & ticketPrice <= 1000)
  18000 + 4 * attendance(ticketPrice)
} ensuring (_ >= 0)
```

Now We Can Apply the Design Recipe to our Remaining Functions

/**

- * Returns revenue received by the theater when
 * showing a film, as a function of ticket price.
 */
- def revenue(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 ticketPrice * attendance(ticketPrice)</pre>
- } ensuring (_ >= 0)

What Should Be The Ensuring Clause on Profit?

```
/**
```

- * Returns profit enjoyed by the theater after showing
- * a film, defined as the difference between revenue * costs.

```
*/
```

```
def profit(ticketPrice: Int) = {
    require (ticketPrice >= 0 & ticketPrice <= 1000)
    revenue(ticketPrice) - cost(ticketPrice)
}</pre>
```

Of Course, We Would Now Have Tests On All of our Defined Functions

35150 = profit(510)
-21480 = profit(0)
-18000 = profit(1000)

... 0 = revenue(0) 0 = revenue(1000) 53550 = revenue(510)

$$18420 = cost(510)$$

 $21480 = cost(0)$
 $18000 = cost(1000)$

...

And We Haven't Forgot About Max!

How Many Helper Functions to Include?

- As a guideline:
 - Include a helper function for the dependencies mentioned in your problem statement
 - Include a helper function for new dependencies discovered during testing

Inlining Into One Large Function Makes Code Far Less Readable

```
def profit(ticketPrice: Int) = {
   require (ticketPrice >= 0 & ticketPrice <= 1000)
   ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2) -
        18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)
}</pre>
```

Including Constant Definitions

- We can include constant definitions in functions using val
- We refer to expressions prefixed with a sequence of constant definitions as compound expressions

Place After The Requires Clause and Before the "Result" Expression

def cost(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)</pre>

val fixedCost = 18000
val perAttendeeCost = 4

fixedCost + perAttendeeCost * attendance(ticketPrice)
} ensuring (_ >= 0)

To Reduce A Compound Expression

- First compute the value of each constant definition, top to bottom
- Then reduce the result expression, replacing each occurrence of a constant name with its computed value