
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Doubles (Continued)

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

Representations of Doubles

• Many quantities have more than one representation
in this format:

1024 ✕ 2500

512 ✕ 2501

Distances Between Doubles

• The distance between adjacent values of type
Double is not constant

• The values are most dense near zero

• They grow sparser exponentially as one moves
away from zero

Operations and Rounding

• Arithmetic operations round to the closest
representable value

• Ties are broken by choosing the value with the
smaller absolute value

• We can think of each value of type Double as
denoting the range of real numbers that are
closest to it

Overflow with Doubles

• Computations on Doubles that result in values
larger than the largest finite Double are
represented with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

• Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero
Double are represented with special values:

0.0 -0.0

Division By Zero

• Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 ↦ Double.PositiveInfinity

1.0 / -0.0 ↦ Double.NegativeInfinity

Division By Zero

• As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 ↦
Double.PositiveInfinity

Division By Zero

• Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 ↦ Double.NaN

-0.0 / 0.0 ↦ Double.NaN

Doubles Break Common
Algebraic Properties

• Addition is not associative:

(0.1 + 0.2) + 0.3 ↦
0.6000000000000001

0.1 + (0.2 + 0.3) ↦
0.6

Doubles Break Common
Algebraic Properties

• Equality is not reflexive:
Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

100.0 * (0.1 + 0.2) ↦
30.000000000000004

100.0 * 0.1 + 100.0 * 0.2 ↦
30.0

Morals of Floating Point
Computation

• Avoid floating point computation whenever you
need to compute precise numeric values (such as
monetary values)

• Use floating point values only when calculating with
inexact measurements over a range larger than
can be represented with precise arithmetic

Morals of Floating Point
Computation

• Try to bound the margin of error in your calculation

• Don’t test for equality directly

• Instead of writing:

x == y

• We want to write something like:

abs(x - y) <= tolerance

Defining Absolute Value

def abs(x: Double) = if (x >= 0) x else -x

Computing Conditional
Expressions

• We used a slight of hand when presenting if
expressions

if (e1) e2 else e3

• According to the substitution model of
computation, how do we compute the value of
this expression?

Computing Conditional
Expressions
if (e1) e2 else e3

• First we compute e1 ↦ v1, then e2 ↦ v2, then
e3 ↦ v3

• If v1 is true then reduce to v2

• Otherwise reduce to v3

But Consider the Following
Expression

if (false) 1/0 else 3

This expression should reduce to 3

New Rule for Conditional
Expressions

• To reduce an if expression:

• Reduce the test clause

• If the test clause reduces to true, reduce the
then clause

• Otherwise, reduce the else clause

What are The Exceptional
Events in Core Scala?

• A “division by zero” error on Ints (but not Doubles)

• We run out of some finite resource

• The computation never stops

• The computation keeps getting larger

Programming With
Intention

Programming With Intention

• There is far too much broken software in the
world…

• The number of mission critical domains affected by
programming is increasing

• Space exploration and satellites, defense,
medical devices, automobiles, finance

Programming With Intention

• Static types help us reduce some errors by
restricting the potential results of a computation

• We still need to defend against exceptional events

• And we need to defend against silent errors

• Silent errors are actually our most insidious risk

Defending Against
Exceptional Conditions

• With division on we Ints,we should ensure that
the divisor is non-zero

• We will return to guarding against exhaustion of
finite resources later

• For now, assume we have sufficient resources,
provided that our time and space requirements
have some bound

Defending Against Unbounded Resource
Consumption and Silent Failures

• We’ve discussed some of the caveats when
programming with Ints and Doubles

• To further defend against such errors, we will make
use of a design recipe

The Design Recipe

The Design Recipe
• Analysis: What are the objects in the problem domain? What

data types we will use to represent them?

• Contract: What is name of our functions and their parameters?
What are the requirements of the data they consume and
produce? What is the meaning of what our program computes?

• Repeat until we are confident in our program’s correctness

• Write some tests

• Sketch a function template

• Define the function

Example: Calculating Profit for a Movie
Theater

(HtDP 2001)
• The owner of a movie theater collected the following

data:

• At $5.00 per ticket, 120 people attend a performance

• Decreasing by $0.10 increases attendance by 15
people

• A performance costs $180 plus $0.04 per attendee

• Define a function to calculate the exact relationship
between ticket price and profit

Analysis
• We are working with monetary values and counts of

attendees

• Attendees are whole numbers

• To avoid rounding errors, we will use Ints for
monetary values

• Therefore all monetary values will be represented in
cents

Analysis

• We need to compute profit

• Profit is calculated as revenue - cost

• Cost is dependent on attendance

Contracts
• First, define a contract for our function:

• What is the name of the function?

• What considerations should go into the names we choose?

• What are the static types of the arguments that our function
consumes?

• What other constraints must hold on the values it consumes?

• What is the static type of its result?

• What else does it ensure about its result?

Contract for Attendance

 def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 …
 } ensuring (_ >= 0)

Syntax and Typing of
Contracts

def fnName(arg0: type0, …, argk: typek):returnType = {

require(expr)

 expr

} ensuring (expr)

The static types of the require and ensuring clauses
must be of type Boolean

Statement of Purpose

• Use a comment to provide a brief statement of the
meaning of the function

• Well chosen names for functions and parameters
are often some of the best documentation!

Statement of Purpose for
Attendance

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 …
 } ensuring (_ >= 0)

Write Some Tests

120 == attendance(500)

We can think of tests as being analogous to constraint
equations in algebra.

Sketch a Function Template
/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 arithmetic expression
} ensuring (_ >= 0)

Defining Functions
• Design Principle: “Keep It Simple, Stupid”

• Given the tests we’ve written so far and the
template we’ve sketched, write the simplest thing
that could possibly work

• Keeping the definition simple will:

• Force us to include adequate test coverage

• Help to keep us from over-engineering

Define The Function
/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)

120
} ensuring (_ >= 0)

We Need More Tests

120 == attendance(500)
135 == attendance(490)

Redefinition (Attempt 1)
/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)

120 + (500 - ticketPrice) * (15 / 10)
} ensuring (_ >= 0)

We Need More Tests

120 == attendance(500)
135 == attendance(490)

But Now Some Tests Fail

120 == attendance(500)
135 == attendance(490)

Division With Ints
attendance(490) ↦

120 + (500 - 490) * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * 1 ↦

120 + 10 ↦

130

Redefinition (Attempt 2)
/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120 + ((500 - ticketPrice) * 3) / 2
} ensuring (_ >= 0)

Now Our Two Tests Succeed

120 == attendance(500)
135 == attendance(490)

Let’s Add Harder Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Now our ensuring clause fails!

Redefinition (Attempt 3)
/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring (_ >= 0)

(To Do: Apply Our Design
Recipe to max)

 def max(m: Int, n: Int) = if (m >= n) m else n

Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Let’s Add More Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

Overflow Does Not Appear
To Be a Problem…

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

Or Does It…
attendance(2147483647) ↦

max(0, 120 + ((500 - 2147483647) * 3) / 2) ↦

max(0, 120 + (-2147483147 * 3) / 2) ↦

max(0, 120 + -2147482145 / 2) ↦

max(0, 120 + -1073741072) ↦

max(0, -1073740952) ↦

if (0 >= -1073740952) 0 else -1073740952 ↦

0

Bounding Cost of
Attendance

• We can determine an exact bound for the
maximum allowable parameter to attendance:

• For each subexpression, solve for the parameter
values that would result in overflow:

(500 - ticketPrice) > Int.MaxValue

(500 - ticketPrice) < Int.MinValue

etc.

Bounding Values Based on
Domain Knowledge

• We can also find appropriate bounds by considering
the range of values required by our problem domain

• Often, these bounds will be much tighter

• In our example, we can see from our formula that
attendance is zero whenever the cost of a ticket is
$5.80 or above

• We can also see that even free tickets achieve
attendance of only 870 people

Bounding Cost of
Attendance

 def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
 } ensuring (_ >= 0)

Now We Should Remove
Our Test on Int.MaxValue

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

Add Let’s Add Some More
Tests While We’re At It

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(580)
2 == attendance(579)
870 == attendance(0)

Now We Can Apply the Design
Recipe to Our Remaining Functions

 /**
 * Returns cost to the theater of showing a film,
 * as a function of ticketPrice.
 */
 def cost(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 18000 + 4 * attendance(ticketPrice)
 } ensuring (_ >= 0)

 /**
 * Returns revenue received by the theater when
 * showing a film, as a function of ticket price.
 */
 def revenue(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 ticketPrice * attendance(ticketPrice)
 } ensuring (_ >= 0)

Now We Can Apply the Design
Recipe to our Remaining Functions

What Should Be The
Ensuring Clause on Profit?

 /**
 * Returns profit enjoyed by the theater after showing
 * a film, defined as the difference between revenue
 * costs.
 */
 def profit(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 revenue(ticketPrice) - cost(ticketPrice)
 }

Of Course, We Would Now Have
Tests On All of our Defined Functions

35150 = profit(510)
-21480 = profit(0)

-18000 = profit(1000)
…

0 = revenue(0)
0 = revenue(1000)

53550 = revenue(510)
…

18420 = cost(510)
21480 = cost(0)

18000 = cost(1000)
…

And We Haven’t Forgot
About Max!

Int.MaxValue == max(0, Int.MaxValue)
0 == max(-1, 0)
1 == max(-1, 1)

0 = max(0, Int.MinValue)
0 = max(Int.MinValue, 0)

…

How Many Helper Functions
to Include?

• As a guideline:

• Include a helper function for the dependencies
mentioned in your problem statement

• Include a helper function for new dependencies
discovered during testing

Inlining Into One Large Function
Makes Code Far Less Readable

 def profit(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2) -
 18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)
 }

Including Constant
Definitions

• We can include constant definitions in functions
using val

• We refer to expressions prefixed with a sequence
of constant definitions as compound expressions

Place After The Requires Clause
and Before the “Result” Expression

 def cost(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)

 val fixedCost = 18000
 val perAttendeeCost = 4

 fixedCost + perAttendeeCost * attendance(ticketPrice)
 } ensuring (_ >= 0)

To Reduce A Compound
Expression

• First compute the value of each constant definition,
top to bottom

• Then reduce the result expression, replacing each
occurrence of a constant name with its computed
value

