Comp 311
 Functional Programming

Eric Allen, Two Sigma Investments
Robert "Corky" Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Homework 0

- Please follow these instructions for checking out your turnin repository as soon as possible:
- Follow the instructions under Homework Submission Guide at the Course Website
- Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text, Hello, world!
- This submission is not for credit
- We will let you know if we have not received your submission
- You will be responsible for successfully submitting your hw_1 assignment using turnin
- Please bring problems to our attention as soon as possible

So, what are types?

Values Have Value Types

Definition: A value type is a name for a collection of values with common properties.

Values Have Value Types

- Examples of value types:
- Natural numbers
- Integers
- Floating point numbers
- And many more

Expressions Have Static Types

Definition (Attempt 1): A static type is an assertion that an expression reduces to a value with a particular value type.

Expressions Have Static Types

$$
4+5: \mathbf{N} \mapsto 9: \mathbf{N}
$$

Rules for Static Types

- If an expression is a value, its static type is its value type

$$
\text { 5: } \mathbf{N}
$$

- With each operator, there are "if-then" rules stating the required static types of the operands, and the static type of the application:

Integer Addition: If the operands to + are of type \mathbf{N} then the application is of type N

Expressions Have Static Types

Definition (Attempt 1): A static type is an assertion that an expression reduces to a value with a particular value type.

Not quite.

Expressions Have Static Types

16 / 20: $\mathbf{Q} \mapsto 0.8: \mathbf{Q}$

So far, so good...

Expressions Have Static Types

$$
16 / 0: \mathbf{Q} \mapsto ?
$$

Expressions Have Static Types

Definition (Attempt 2): A static type is an assertion that either an expression reduces to a value with a particular value type, or one of a well-defined set of exceptional events occurs.

Why Static Types?

- Using our rules, we can determine whether an expression has a static type
- If it does, we say the expression is well-typed, and we know that proceeding with our computation is type safe:
- Either our computation will finish with a value of the determined value type, or one of a welldefined exceptional events will occur

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- What else?

What are the Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- What if we run out of paper?
- Or pencil lead? Or erasers?
- What if we run out of time?

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A "division by zero" error
- We run out of some finite resource

Our Second Exposure to Computation:

Algebra

Now, We Learn How to Define Our Own Operators (a.k.a. functions)

$$
\begin{gathered}
f(x)=2 x+1 \\
f(x, y)=x^{2}+y^{2}
\end{gathered}
$$

And We Learn How to Compute With Them

$$
f(x)=2 x+1
$$

$$
f(3+2) \mapsto
$$

$$
f(5) \mapsto
$$

$(2 \times 5)+1 \mapsto$

$$
10+1 \mapsto
$$

11

The Substitution Rule of Computation

- To reduce an application of a function to a set of arguments:
- Reduce the arguments, left to right
- Reduce the body of the function, with each parameter replaced by the corresponding argument

Using the Substitution Rule

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2} \\
f f(4-5,3+1) \mapsto \\
f(-1,3+1) \mapsto \\
f(-1,4) \mapsto \\
-1^{2}+4^{2} \mapsto \\
1+16 \mapsto
\end{gathered}
$$

What About Types?

- Eventually, we learn that our functions need to include rules indicating the required types of their arguments, and the types of applications
- You might have seen notation like this in a math class:

$$
f: \mathbf{Z} \rightarrow \mathbf{Z}
$$

Typing Rules for Functions

$$
f: \mathbf{Z} \rightarrow \mathbf{Z}
$$

What does this rule mean?

Typing Rules for Functions

$$
f: \mathbf{Z} \rightarrow \mathbf{Z}
$$

- We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type \mathbf{Z} and produces values with value type \mathbf{Z}
(or one of a well-defined set of exceptional events occurs).

Typing Rules for Functions

$$
f: \mathbf{Z} \rightarrow \mathbf{Z}
$$

- We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type \mathbf{Z} then the application expression has static type \mathbf{Z}.

What are The Exceptional Events in Algebra?

- A "division by zero" error
- We run out of some finite resource
- What else?

The Substitution Rule Allows for Computations that Never Finish

$$
\begin{gathered}
f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \\
f(x, y)=f(x, y) \\
f(4-5,3+1) \mapsto \\
f(-1,3+1) \mapsto \\
f(-1,4) \mapsto \\
f(-1,4) \mapsto
\end{gathered}
$$

The Substitution Rule Allows for

 Computations that Keep Getting Larger$f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$
$f(x, y)=f(f(x, y), f(x, y))$
$f(4-5,3+1) \mapsto$
$f(-1,3+1) \mapsto$
$f(-1,4) \mapsto$
$f(f(-1,4), f(-1,4)) \mapsto$
$f(f(f(-1,4), f(-1,4)), f(f(-1,4), f(-1,4))) \mapsto$

But We Need at Least Limited Recursion to Define Common Algebraic Constructs

$$
\begin{aligned}
& !: \mathbf{N} \rightarrow \mathbf{N} \\
& n!= \begin{cases}1 & \text { if } n=0 \\
n(n-1)! & \text { if } n>0\end{cases}
\end{aligned}
$$

What are The Exceptional Events in Algebra?

- A "division by zero" error
- We run out of some finite resource
- The computation never stops (unbounded time)
- The computation keeps getting larger (unbounded space)

Our Third Exposure to Computation:

Core Scala

Core Scala

- We will continue to use algebra as our model of computation
- We will switch to Scala syntax
- We will introduce new value types

Value Types in Core Scala

Int: $-3,-2,-1,0,1,2,3$
Double: 1.414, 2.718, 3.14
Boolean: false, true
String: "Hello, world!"

Primitive Operators on Ints and Doubles in Core Scala

Algebraic operators:

$$
e+e^{\prime} \quad e-e^{\prime} \quad e^{*} e^{\prime} \quad e / e^{\prime}
$$

- For each operator:
- If both arguments to an application of an operator are of type Int then the application is of type Int
- If both arguments to an application of an operator are of type Double then the application is of type Double

Primitive Operators on Ints and Doubles in Core Scala

Comparison operators:

$$
\begin{gathered}
e=e^{\prime} \quad e<=e^{\prime} \quad e>=e^{\prime} \\
e>e^{\prime} \quad e<e^{\prime}
\end{gathered}
$$

- For each operator:
- If both arguments to an application of an operator are of type Int then the application is of type Boolean
- If both arguments to an application of an operator are of type Double then the application is of type Boolean

Some Primitive Operators on Booleans in Core Scala

Conjunction, Disjunction:

$$
e \& e^{\prime} \quad \text { e | } e^{\prime}
$$

- In both cases:
- If both arguments to an application are of type Boolean then the application is of type Boolean

More Primitive Operators on Booleans in Core Scala

Negation:
!e

- If the argument to an application is of type Boolean then the application is of type Boolean

Yet More Primitive Operators on Booleans in Core Scala

Conditional Expressions:
if (e) e' else e't

- If the first argument is of type Boolean and the second and third argument are of the same type T then the application is of type T

Primitive Operators on Strings in Core Scala

String Concatenation:

$$
e+e^{\prime}
$$

- If both arguments are of type String then the application is of type String

An Example Function Definition in Core Scala

 def square(x : Double) $=x{ }^{*} x$
Syntax for Defining Functions

def fnName(arg0: type0, ..., argk: typek):returnType = expr

- If there is no recursion, we do not need to declare the return type:
def fnName(arg0: type0, ..., argk: typek) = expr

The Substitution Rule Works as Before

def square(x : Double) $=x{ }^{*} x$

square(2.0 * 3.0) \mapsto
square(6.0) \mapsto
$6.0 * 6.0 \mapsto$
36.0

The Nature of Ints

Fixed Size Ints

- Unlike the integers we might write on a sheet of paper, the values of type Int are of a fixed size
- For every n: Int,

$$
-2^{31} \leq n \leq 2^{31}-1
$$

Fixing the Size of Numbers Has Many Benefits

- The time needed to compute the application of an operation on two numbers is bounded
- The space needed to store a number is bounded
- We can easily reuse the space used for one number to store another

But We Need to Concern Ourselves with Overflow

- If we compute a value larger than $2^{21}-1$, our representation will "wrap around"

$$
2147483647+1 \mapsto-2147483648
$$

The Moral of Computing with Ints

- If possible, determine the range of potential results of a computation
- Ensure that this range is no larger than the range of representable values of type Int
- Otherwise, include in your computation a check for overflow

The Nature of Doubles

Scientific Notation

- Numeric values in scientific computations can span enormous ranges, from the very large to the very small
- At the same time, scientific measurements are of limited precision
- "Scientific notation" was devised in order to efficiently represent approximate values that span a large range

Scientific Notation

6.022×10^{23}
 mantissa exponent

Scientific Notation and Efficient Computation

- We normalize the mantissa so that its value is at least 1 but less than 10
- If we
- Set the number of digits in the mantissa to a fixed precision, and
- Set the number of digits in the exponent to a fixed precision
- Then all numbers in our notation are of a fixed size

Doubles

- Values of type Double are stored as with fixed sized numbers in scientific notation, but with a few differences:
- Finite, nonzero numeric values can be expressed in the form:

$$
\pm m 2^{e}
$$

Doubles

$\pm m 2^{e}$

- $1 \leq m \leq 2^{53}-1$
$-2^{10}-53+3 \leq e \leq 2^{10}-53$

Doubles

$\pm m 2^{e}$

- $1 \leq m \leq 2^{53}-1$
$-2^{10}-53+3 \leq e \leq 2^{10}-53$
$-1074 \leq e \leq 971$

The Nature of Doubles

Scientific Notation

- Numeric values in scientific computations can span enormous ranges, from the very large to the very small
- At the same time, scientific measurements are of limited precision
- "Scientific notation" was devised in order to efficiently represent approximate values that span a large range

Scientific Notation

6.022×10^{23}
 mantissa exponent

Scientific Notation and Efficient Computation

- We normalize the mantissa so that its value is at least 1 but less than 10
- If we
- Set the number of digits in the mantissa to a fixed precision, and
- Set the number of digits in the exponent to a fixed precision
- Then all numbers in our notation are of a fixed size

Doubles

- Values of type Double are stored as with fixed sized numbers in scientific notation, but with a few differences:
- Finite, nonzero numeric values can be expressed in the form:

$$
\pm m 2^{e}
$$

Doubles

$\pm m 2^{e}$

- $1 \leq m \leq 2^{53}-1$
$-2^{10}-53+3 \leq e \leq 2^{10}-53$

Doubles

$\pm m 2^{e}$

- $1 \leq m \leq 2^{53}-1$
$-2^{10}-53+3 \leq e \leq 2^{10}-53$
$-1074 \leq e \leq 971$

Representations of Doubles

- Many quantities have more than one representation in this format:

$$
1024 \times 2^{500}
$$

$$
512 \times 2^{501}
$$

Distances Between Doubles

- The distance between adjacent values of type Double is not constant
- The values are most dense near zero
- They grow sparser exponentially as one moves away from zero

Operations and Rounding

- Arithmetic operations round to the closest representable value
- Ties are broken by choosing the value with the smaller absolute value

Overflow with Doubles

- Computations on Doubles that result in values larger than the largest finite Double are represented with special values:

Double.PositiveInfinity

Double.NegativeInfinity

Underflow with Doubles

- Computations on Doubles that result in values with magnitudes smaller than the smallest non-zero Double are represented with special values:

$$
0.0 \quad-0.0
$$

Division By Zero

- Division of a non-zero finite value by a zero value results in an infinite value:

$$
\begin{aligned}
& 1.0 / 0.0 \mapsto \text { Double.PositiveInfinity } \\
& 1.0 /-0.0 \mapsto \text { Double.NegativeInfinity }
\end{aligned}
$$

Division By Zero

- As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 \rightarrow Double.PositiveInfinity

Division By Zero

- Division of a zero value by a zero value results in another special value NaN (for "Not a Number"):
$0.0 / 0.0 \mapsto$ Double.NaN
$-0.0 / 0.0 \mapsto$ Double. NaN

