Comp 311
~unctional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments



Homework O

» Please follow these instructions for checking out your turnin repository as soon
as possible:

Follow the instructions under Homework Submission Guide at the Course
Website

Submit a hw_0 folder with a single file HelloWorld.txt and a single line of
text, Hello, world!

This submission is not for credit
We will let you know if we have not received your submission

You will be responsible for successfully submitting your hw_1 assignment
using turnin

Please bring problems to our attention as soon as possible


https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

SO, what are types”



Values Have
Value Types

Definition: A value type is a name tor a collection of
values with common properties.



Values Have
Value Types

 Examples of value types:
* Natural numbers
* Integers
* Foating point numbers

* And many more



EXpressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a
particular value type.



EXpressions Have
Static Types

4 +5 N9 N

v

Static Type Value Type



Rules for Static Types

e |f an expression is a value, its static type is its value type

* With each operator, there are “if-then” rules stating the
required static types of the operands, and the static type
of the application:

Integer Addition: If the operands to + are of type N
then the application is of type N



EXpressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a
particular value type.

Not quite.



EXpressions Have
Static Types

16/20: Q- 0.8: Q

SO far, so good...



EXpressions Have
Static Types

16/0: Qw7



EXpressions Have
Static Types

Definition (Attempt 2): A static type is an assertion

that either an expression reduces to a value with a

particular value type, or one of a well-detined set of
exceptional events occurs.




Why Static Types”

* Using our rules, we can determine whether an
expression has a static type

* |t it does, we say the expression is well-typed,
and we know that proceeding with our
computation is type safe:

e Either our computation will finish with a value of

the determined value type, or one of a well-
defined exceptional events will occur



What Constitutes the Set of Well-Detined
Exceptional Events in Arithmetic”

A “division by zero” error

e \What else?



What are the Well-Defined
Exceptional Events in Arithmetic”

A “division by zero” error
 What if we run out of paper?
* Or pencil lead? Or erasers?

e \What if we run out of time”?



What Constitutes the Set of Well-Detined
Exceptional Events in Arithmetic”

A “division by zero” error

e \We run out of some finite resource



Our Second Exposure to
Computation:

Algebra



Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(xX) = 2Xx + 1

f(X, y) = X2+ y?



And We Learn How to
Compute With Them

f(x) = 2X + 1

f(3+2) -



The Substitution Rule of
Computation

* Jo reduce an application of a function to a set of
arguments:

* Reduce the arguments, left to right
 Reduce the body of the function, with each

parameter replaced by the corresponding
argument



Using the Substitution Rule

f(x, y) = X + y?

f(4-53+1)-

f-1,3+ 1)~
f(-1,4) —
12+ 4%
1+ 16~

17



What About Types?

* Eventually, we learn that our functions need to
include rules indicating the required types of their
arguments, and the types of applications

* You might have seen notation like this in a math
class:

f: 4. = 7



Typing Rules for Functions

f: 4. = 7

What does this rule mean?



Typing Rules for Functions

f: 4. = 7

* We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type
Z. and produces values with value type Z

(or one of a well-defined set of exceptional events
occurs).



Typing Rules for Functions

f: 4. = 7

* We can also interpret the arrow as logical
implication:

[T fis applied to an argument expression with static
type Z. then the application expression has static

type 7.



What are 1he exceptional
Events in Algebra®

A “division by zero” error

e \We run out of some finite resource

e \What else?



The Substitution Rule Allows for
Computations that Never Finish

f:4 x 1 — 1

f(x, y) = 1(x, y)

f(4-53+1)0
f(-1,3+ 1) o
f(-1, 4) o

f(-1,4) —



Ihs

e S

Comp

Jtat

Jbstr

ONS

ution Rule Al

OWS for

that Keep Ge

4 X1 — 7L

i(x, y) =1(i(x, y), {(x, y))

ting Larger

f(4-5,3+1) 0
f(-1,3+ 1)

f(-1, 4) »

f(f(-1, 4), 1(-1, 4)) »

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) »



But We Need at Least Limited Recursion
to Define Common Algebraic Constructs

- N—>N

o 1 tfn=0
= n(n-1)! if n>0



What are 1he exceptional
Events in Algebra®

A “division by zero” error
We run out of some finite resource

The computation never stops
(unbounded time)

The computation keeps getting larger
(unbounded space)



Our Third Exposure to
Computation:

Core Scala



Core Scala

* We will continue to use algebra as our model of
computation

* We will switch to Scala syntax

 We will introduce new value types



Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3
Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”



Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:
e + e’ e - e’ e * e’ e / e
* For each operator:

* |f both arguments to an application of an operator are
of type Int then the application is of type Int

* It both arguments to an application of an operator are
of type Double then the application is of type Double



Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == e’ e <= e e >= e’

/

e > € e < €

 [For each operator:

* |f both arguments to an application of an operator are of
type Int then the application is of type Boolean

* |t both arguments to an application of an operator are of
type Double then the application is of type Boolean



Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:
e & e’ e | e’

 |n both cases:

* |f both arguments to an application are of type
Boolean then the application is of type Boolean



More Primitive Operators on
Booleans in Core Scala

Negation:
le

* |t the argument to an application is of type Boolean
then the application is of type Boolean



Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:
1f (e) e’ else e’’

* |f the first argument is of type Boolean and the
second and third argument are of the same type T

then the application is of type T



Primitive Operators on
Strings in Core Scala

String Concatenation:

e + e’

* |f both arguments are of type String then the
application is of type String



An Example Function
Definition in Core Scala

def square(x: Double) = x * x



Syntax for Defining
Functions

def fnName(arg@: type@, .., argk: typek):returnType

expr

e |fthere IS no recursion, we do not need to declare
the return type:

def fnName(arg@: type@, .., argk: typek) =

expr



The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ~
square(6.0) ~
6.0 * 6.0 ~
36.0



The Nature of Ints



Fixed Size Ints

* Unlike the integers we might write on a sheet of
paper, the values of type Int are of a fixed size

* For every n: Int,

231 < n < 231



Fixing the Size of Numbers
Has Many Benefits

* The time needed to compute the application of an
operation on two numbers is bounded

* [he space needed to store a number Is bounded

 We can easily reuse the space used for one
number to store another



But We Need to Concern
Ourselves with Overflow

* |f we compute a value larger than 231-1, our

representation will “wrap around”

21474830647 + 1 » -2147483648



The Moral of Computing with
INtS

* |t possible, determine the range of potential results
of a computation

* Ensure that this range is no larger than the range
of representable values of type Int

e Otherwise, include in your computation a check for
overtlow



The Nature of Doubles



Scientific Notation

 Numeric values in scientific computations can span
enormous ranges, from the very large to the very

small

e At the same time, scientific measurements are of
limited precision

e “Scientific notation” was devised in order to
efficiently represent approximate values that span a

large range



Scientific Notation

6.022 x 1023

mantissa exponent



Scientific Notation and
Efficient Computation

e \WWe normalize the mantissa so that its value Is at least 1
but less than 10

e |fwe

e Set the number of digits in the mantissa to a fixed
precision, and

e Set the number of digits in the exponent to a fixed
precision

e Then all numbers in our notation are of a fixed size



Doubles

* Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

* Finite, nonzero numeric values can be expressed
in the form:

+ m 2°



Doubles

+ m 2°
1<m < 25-1

-210-53+3 < e < 270-53



Doubles

+ m 2°
1<m < 25-1
-210_.53+3 < e < 270_53

-1074 <e <971



The Nature of Doubles



Scientific Notation

 Numeric values in scientific computations can span
enormous ranges, from the very large to the very

small

e At the same time, scientific measurements are of
limited precision

e “Scientific notation” was devised in order to
efficiently represent approximate values that span a

large range



Scientific Notation

6.022 x 1023

mantissa exponent



Scientific Notation and
Efficient Computation

e \WWe normalize the mantissa so that its value Is at least 1
but less than 10

e |fwe

e Set the number of digits in the mantissa to a fixed
precision, and

e Set the number of digits in the exponent to a fixed
precision

e Then all numbers in our notation are of a fixed size



Doubles

* Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

* Finite, nonzero numeric values can be expressed
in the form:

+ m 2°



Doubles

+ m 2°
1<m < 25-1

-210-53+3 < e < 270-53



Doubles

+ m 2°
1<m < 25-1
-210_.53+3 < e < 270_53

-1074 <e <971



Representations of Doubles

 Many guantities have more than one representation
N this format:

1024 X 2°00

512 X 2501



Distances Between Doubles

* [he distance between adjacent values of type
Double is not constant

e [he values are most dense near zero

* They grow sparser exponentially as one moves
away from zero



Operations and Rounding

* Arithmetic operations round to the closest
representable value

* [ies are broken by choosing the value with the
smaller absolute value



Overflow with Doubles

 Computations on Doubles that result in values
larger than the largest finite Double are
represented with special values:

Double.PositiveInfinity

Double.NegativelInfinity



Undertlow with Doubles

 Computations on Doubles that result in values with
magnitudes smaller than the smallest non-zero
Double are represented with special values:

0.0 -0.0



Division By Zero

* Division of a non-zero finite value by a zero value
results in an infinite value:

1.0 / 0.0 » Double.PositivelInfinity

1.0 / -0.0 » Double.NegativelInfinity



Division By Zero

* As does division of an infinite value by a zero value:

Double.PositiveInfinity / 0.0 -
Double.PositiveInfinity



Division By Zero

* Division of a zero value by a zero value results in
another special value NaN (for “Not a Number”):

0.0 / 0.0 -~ Double.NaN

-0.0 / 0.9 » Double.NaN



