Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments
Overflow with Doubles

- Computations on Doubles that result in values larger than the largest finite Double are represented with special values:

 Double.PositiveInfinity

 Double.NegativeInfinity
Underflow with Doubles

• Computations on Doubles that result in values with magnitudes smaller than the smallest non-zero Double are represented with special values:

 0.0 -0.0
Division By Zero

- Division of a non-zero finite value by a zero value results in an infinite value:

 \[1.0 / 0.0 \mapsto \text{Double.PositiveInfinity} \]

- \[1.0 / -0.0 \mapsto \text{Double.NegativeInfinity} \]
Division By Zero

- As does division of an infinite value by a zero value:

 \[
 \text{Double.PositiveInfinity} / 0.0 \mapsto \text{Double.PositiveInfinity}
 \]
Division By Zero

• Division of a zero value by a zero value results in another special value NaN (for “Not a Number”):

\[
0.0 / 0.0 \mapsto \text{Double.NaN}
\]

\[
-0.0 / 0.0 \mapsto \text{Double.NaN}
\]
Doubles Break Common Algebraic Properties

- Addition is not associative:

\[(0.1 + 0.2) + 0.3 \mapsto 0.6000000000000001\]

\[0.1 + (0.2 + 0.3) \mapsto 0.6\]
Doubles Break Common Algebraic Properties

• Equality is not reflexive:
 Double.NaN != Double.NaN

• Multiplication does not distribute over addition:

 \[100.0 \times (0.1 + 0.2) \mapsto 30.000000000000004 \]

 \[100.0 \times 0.1 + 100.0 \times 0.2 \mapsto 30.0 \]
Morals of Floating Point Computation

- Avoid floating point computation whenever you need to compute precise numeric values (such as monetary values)

- Use floating point values only when calculating with inexact measurements over a range larger than can be represented with precise arithmetic
Morals of Floating Point Computation

• Try to bound the margin of error in your calculation

• Don’t test for equality directly
 • Instead of writing:

 \[x == y \]

 • Write:

 \[\text{abs}(x - y) \leq \text{tolerance} \]
Defining Absolute Value

```scala
def abs(x: Double) = if (x >= 0) x else -x
```
Computing Conditional Expressions

• We used a slight of hand when presenting if expressions

 if (e1) e2 else e3

• According to the substitution model of computation, how do we compute the value of this expression?
Computing Conditional Expressions

\[
\text{if (e1) e2 else e3}
\]

- First we compute \(e_1 \mapsto v_1 \), then \(e_2 \mapsto v_2 \), then \(e_3 \mapsto v_3 \)
- If \(v_1 \) is true then reduce to \(v_2 \)
- Otherwise reduce to \(v_3 \)
But Consider the Following Expression

if (false) 1/0 else 3

This expression should reduce to 3
New Rule for Conditional Expressions

• To reduce an if expression:
 • Reduce the **test** clause
 • If the test clause reduces to **true**, reduce the **then** clause
 • Otherwise, reduce the **else** clause
What are The Exceptional Events in Core Scala?

- A “division by zero” error on Ints (but not Doubles)
- We run out of some finite resource
 - The computation never stops
 - The computation keeps getting larger
Programming With Intention
Programming With Intention

• There is far too much broken software in the world…

• The number of mission critical domains affected by programming is increasing

 • Space exploration and satellites, defense, medical devices, automobiles, finance
Programming With Intention

• Static types help us reduce some errors by restricting the potential results of a computation

• We still need to defend against exceptional events

• And we need to defend against silent errors
 • *Silent errors are actually our most insidious risk*
Defending Against Exceptional Conditions

• With division on \texttt{Ints}, we should ensure that the divisor is non-zero

• We will return to guarding against exhaustion of finite resources later

• For now, assume we have sufficient resources, provided that our time and space requirements have some bound
Defending Against Unbounded Resource Consumption and Silent Failures

• We’ve discussed some of the caveats when programming with Ints and Doubles

• To further defend against such errors, we will make use of a design recipe
The Design Recipe
The Design Recipe

• **Analysis**: What are the objects in the problem domain? What data types we will use to represent them?

• **Contract**: What is name of our functions and their parameters? What are the requirements of the data they consume and produce? What is the meaning of what our program computes?

• **Repeat** until we are confident in our program’s correctness

 • Write some **tests**

 • Sketch a function **template**

 • **Define** the function
Example: Calculating Profit for a Movie Theater

(Problem Statement from “How to Design Programs” 2001)

• The owner of a movie theater collected the following data:

 • At $5.00 per ticket, 120 people attend a performance
 • Decreasing by $0.10 increases attendance by 15 people
 • A performance costs $180 plus $0.04 per attendee
 • Define a function to calculate the exact relationship between ticket price and profit
Analysis

• We are working with monetary values and counts of attendees

• Attendees are whole numbers

• To avoid rounding errors, we will use Ints for monetary values

• Therefore all monetary values will be represented in cents
Analysis

• We need to compute *profit*

• Profit is calculated as *revenue - cost*

• Cost is dependent on attendance
Contracts

• First, define a **contract** for our function:

 • What is the name of the function?

 • What considerations should go into the names we choose?

 • What are the static types of the arguments that our function consumes?

 • What other constraints must hold on the values it consumes?

 • What is the static type of its result?

 • What else does it ensure about its result?
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 ...
} ensuring (_ >= 0)
Syntax and Typing of Contracts

def fnName(arg0: type0, ..., argk: typek):returnType = {
 require(expr)
 expr
} ensuring (expr)

The static types of the require and ensuring clauses must be of type Boolean
Statement of Purpose

- Use a comment to provide a brief statement of the meaning of the function

- Well chosen names for functions and parameters are often some of the best documentation!
Statement of Purpose for Attendance

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 ...
 ensuring (_ >= 0)
Write Some Tests

120 == attendance(500)

• We can think of tests as constraint equations in algebra
• The program we are constructing is a solution to these constraints
Sketch a Function Template

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance.
 */

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 an algebraic expression
} ensuring (_ >= 0)
Defining Functions

• **Design Principle:** “Keep It Simple, Stupid”

• Given the tests we’ve written so far and the template we’ve sketched, write the simplest solution that passes those tests

• Keeping the definition simple will:

 • Force us to include adequate test coverage

 • Help to keep us from over-engineering
Define The Function

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance.
 */

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120
} ensuring (_ >= 0)
We Need More Tests

120 == attendance(500)
135 == attendance(490)
Redefinition (Attempt 1)

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 val x = 120 + (500 - ticketPrice) * (15 / 10)
 x
} ensuring (_ >= 0)
But Now Some Tests Fail

120 == attendance(500)
135 == attendance(490)
Division With Ints

\[
\text{attendance}(490) \mapsto \\
120 + (500 - 490) \times (15 / 10) \mapsto \\
120 + 10 \times (15 / 10) \mapsto \\
120 + 10 \times 1 \mapsto \\
120 + 10 \mapsto \\
130
\]
Redefinition (Attempt 2)

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 120 + ((500 - ticketPrice) * 3) / 2
} ensuring (_ >= 0)
Now Our Two Tests Succeed

120 == attendance(500)
135 == attendance(490)
Let’s Add Harder Tests

\[
\begin{align*}
120 &\;==\; attendance(500) \\
135 &\;==\; attendance(490) \\
0 &\;==\; attendance(1000)
\end{align*}
\]

Now our ensuring clause fails!
Redefinition (Attempt 3)

/**
 * Given a ticketPrice in cents,
 * returns the number of people expected
 * to attend a performance
 */

def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring (_ >= 0)
(To Do: Apply Our Design Recipe to max)

def max(m: Int, n: Int) = if (m >= n) m else n
Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
Let’s Add More Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)
Overflow Does Not Appear To Be a Problem…

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)
Or Does It...

```
attendance(2147483647) ↦
max(0, 120 + ((500 - 2147483647) * 3) / 2) ↦
max(0, 120 + (-2147483147 * 3) / 2) ↦
max(0, 120 + -2147482145 / 2) ↦
max(0, 120 + -1073741072) ↦
max(0, -1073740952) ↦
if (0 >= -1073740952) 0 else -1073740952 ↦
0
```
Bounding Cost of Attendance

• We can determine an exact bound for the maximum allowable parameter to attendance:

• For each subexpression, solve for the parameter values that would result in overflow:

 \[(500 - \text{ticketPrice}) > \text{Int.MaxValue}\]

 \[(500 - \text{ticketPrice}) < \text{Int.MinValue}\]

 etc.
Bounding Values Based on Domain Knowledge

• We can also find appropriate bounds by considering the range of values required by our problem domain

 • Often, these bounds will be much tighter

• In our example, we can see from our formula that attendance is zero whenever the cost of a ticket is $5.80 or above

• We can also see that even free tickets achieve attendance of only 870 people

 • And it is likely that our theater cannot seat 870 people!
def attendance(ticketPrice: Int): Int = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring (_ >= 0)
Now We Should Remove Our Test on Int.MaxValue

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)
Add Let’s Add Some More Tests While We’re At It

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(580)
2 == attendance(579)
870 == attendance(0)
Now We Can Apply the Design Recipe to Our Remaining Functions

/**
 * Returns cost to the theater of showing a film,
 * as a function of ticketPrice.
 */

def cost(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 18000 + 4 * attendance(ticketPrice)
} ensuring (_ >= 0)
Now We Can Apply the Design Recipe to our Remaining Functions

```scala
/**
 * Returns revenue received by the theater when showing a film, as a function of ticket price.
 */
def revenue(ticketPrice: Int) = {
  require (ticketPrice >= 0 & ticketPrice <= 1000)
  ticketPrice * attendance(ticketPrice)
} ensuring (_ >= 0)
```
What Should Be The Ensuring Clause on Profit?

/**
 * Returns profit enjoyed by the theater after showing a film, defined as the difference between revenue costs.
 */

def profit(ticketPrice: Int) = {
 require (ticketPrice >= 0 & ticketPrice <= 1000)
 revenue(ticketPrice) - cost(ticketPrice)
}
Following The Design Recipe includes writing tests on all of our newly defined functions

\[
\begin{align*}
35130 &= \text{profit}(510) \\
-21480 &= \text{profit}(0) \\
-18000 &= \text{profit}(1000) \\
&\vdots \\
0 &= \text{revenue}(0) \\
0 &= \text{revenue}(1000) \\
53550 &= \text{revenue}(510) \\
&\vdots \\
18420 &= \text{cost}(510) \\
21480 &= \text{cost}(0) \\
18000 &= \text{cost}(1000) \\
&\vdots
\end{align*}
\]
And We Haven’t Forgot About Max!

\[
\begin{align*}
\text{Int.MaxValue} &= \max(0, \text{Int.MaxValue}) \\
0 &= \max(-1, 0) \\
1 &= \max(-1, 1) \\
0 &= \max(0, \text{Int.MinValue}) \\
0 &= \max(\text{Int.MinValue}, 0)
\end{align*}
\]

...
How Many Helper Functions Should We Include?

• As a guideline:
 • Include a helper function for each of the dependencies mentioned in your problem statement
 • Include a helper function for new dependencies discovered during testing
Inlining Into One Large Function Makes Code Far Less Readable

```scala
def profit(ticketPrice: Int) = {
  require (ticketPrice >= 0 & ticketPrice <= 1000)

  ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2) -
  18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)
}
```