
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Announcements
• It is strongly recommended that you follow the instructions for checking out

your turnin repository as soon as possible:

• Follow the instructions under Homework Submission Guide at the Course
Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of
text, Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment
using turnin

• Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

Announcements

Two Sigma internships and full-time positions
available (Houston and New York Offices)

• So far, we have been rigorous about computation of
programs, but we have relied on intuition for static
type checking

• We can provide a static semantics for Core Scala
along with our dynamic semantics

Type Checking

The Substitution Model of
Type Checking

• To type check a value v, replace v with its value type

1.003 ⇒ Double

• To type check a constant c, reduce the defining expression of c to a static type T,
then replace all occurrences of c with T

pi = 3.14 ⇒

pi : Double

pi * radius * radius ⇒

Double * radius * radius

The Substitution Model of
Type Checking

• To type check a function definition:

• Type check the body of the definition, replacing all occurrences of each
parameter with the corresponding parameter type

• To type check the occurrence of a function name:

• Replace the name with an arrow type, where the parameter types of the
function are to the left of the arrow and the return type is to the right

square(x: Double): Double = x * x

square(3.14) ⇒

(Double ! Double)(3.14)

The Substitution Model of
Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the parameter types match the corresponding
argument types, reduce the application to the
return type

The Substitution Model of
Type Checking

square(3.14) ⇒

(Double ! Double)(3.14) ⇒

(Double ! Double)(Double) ⇒

Double

Conditional Functions
On Point Values

Conditional Functions On
Point Values

• Often the cases on a conditional function must test
for equality rather than whether values fall in a
range

• This is especially common with String values

• What about Boolean values?

• Double values should not be tested this way
(why?)

Example: Days in a Month

• Given the name of a month, we want to return the
number of days

Data Analysis and Definition

• We use Strings to denote months and Ints for the
number of days

Contract
• We state the preconditions in documentation:

• How can we improve the precondition? What data
types would we want?

 /**
 * Given a string identifying a month,
 * with the first (and only the first) letter capitalized,
 * returns the number of days in that month
 * for an ordinary year (non-leap) year.
 */
 def days(month: String): Int = {
 …
 } ensuring (_ <= 31)

A Function Template for Conditional
Functions on Point Values

 /**
 * Given a string identifying a month,
 * with the first (and only the first) letter capitalized,
 * returns the number of days in that month
 * for an ordinary year (non-leap) year.
 */
 def days(month: String): Int = {
 month match {
 case … => …
 …
 }
 } ensuring (_ <= 31)

Syntax for Match

 expr0 match {
 case Pattern => expr1
 …
 case Pattern => exprN
 }

Primitive Value Patterns

• A primitive value pattern is either:

• A primitive value

• A free parameter

• The special pattern _

Matching a Primitive Value
With a Pattern

• A primitive value v matches:

• Itself

• A free parameter

• The special pattern _

• Should only be used as the final clause of a
match (why?)

Meaning of a Match
Expression

• To reduce a match expression:

• Reduce expr0 to a value v

• Find the first pattern k matching v (if it exists) and reduce to
exprK (replacing all occurrences of k with v if k is a free
parameter)

• Failure to match a pattern results in a new form of exceptional
condition

 expr0 match {
 case Pattern => expr1
 …
 case Pattern => exprN
 }

Using Match for Point Value
Matching

 /**
 * Given a string identifying a month,
 * with the first (and only the first) letter capitalized,
 * returns the number of days in that month
 * for an ordinary year (non-leap) year.
 */
 def days(month: String): Int = {
 month match {
 case "January" => 31
 case "February" => 28
 case "March" => 31
 case "April" => 30
 case "May" => 31
 case "June" => 30
 case "July" => 31
 case "August" => 31
 case "September" => 30
 case "October" => 31
 case "November" => 30
 case "December" => 31
 }
 } ensuring (_ <= 31)

Reducing Match
days(“September”)

↦

 “September” match {
 case "January" => 31
 case "February" => 28
 case "March" => 31
 case "April" => 30
 case "May" => 31
 case "June" => 30
 case "July" => 31
 case "August" => 31
 case "September" => 30
 case "October" => 31
 case "November" => 30
 case "December" => 31
 }
 } ensuring (_ <= 31)

↦

30

A Match With a Free
Parameter

 def plural(word: String): String = {
 word match {
 case "deer" => "deer"
 case "fish" => "fish"
 case "mouse" => "mice"
 case x => x + "s"
 }

Conditional Functions
On Intervals

Conditional Functions On
Intervals

• Often a computation falls into distinct cases
depending on which of a finite set of intervals a
value falls into

• In such cases, it can help to break the number
line into distinct regions that we must handle
separately:

Designing Conditional
Functions

• Example: Graduated Income Tax (Single Filer):

• Up to $9,075: 10%

• $9,075 to $36,900: 15%

• $36,901 to $89,350: 25%

• $89,351 to 186,350: 28%

• $186,351 to $405,100: 33%

• $405,101 to $406,750: 35%

• $405,751 or more: 39.6%

• We follow the Design Recipe

Graduated Income Tax:
Data Analysis and Definition

• We use Ints to denote U.S. Dollar values and tax
percentages (using integer division by 100 as a
last step)

• Both income and tax should be non-negative

• We break the number line into the relevant intervals

$0 $9075 $36,900

10% 15%

…
25%

Contract
 /**
 * Given an income in U.S. Dollars,
 * returns the dollar value of tax
 * owed for a single tax payer, using
 * 2014-2015 IRS tax brackets.
 */
 def incomeTax(income: Int) = {
 require(income >= 0)
 …
 } ensuring (_ >= 0)

Function Application
Examples

• We should develop at least one example per case,
as well as borderline cases

100 = incomeTax(1000)

907 = incomeTax(9075)

907 + 138 = incomeTax(10000)

…

Our Function Template for
Conditional Functions

 /**
 * Given an income in U.S. Dollars,
 * returns the dollar value of tax
 * owed for a single tax payer, using
 * 2014-2015 IRS tax brackets.
 */
 def incomeTax(income: Int): Int = {
 require(income >= 0)

 if (income <= cutoff0) {
…

 } else if (income <= cutoff1) {
…

 } else if (income <= cutoff2) {
…

 } else if (income <= cutoff3) {
…

 } else if (income <= cutoff4) {
…

 } else if (income <= cutoff5) {
…

 } else if (income <= cutoff6) {
…

 } else { // income > cutoff6
…

 }
 } ensuring (_ >= 0)

Defining Our Constant
Values in One Place

 val bracket0 = 0
 val cutoff0 = 0

 val bracket1 = 100
 val cutoff1 = 9075

 val bracket2 = 150
 val cutoff2 = 36900

 val bracket3 = 250
 val cutoff3 = 89350

 val bracket4 = 280
 val cutoff4 = 186350

 val bracket5 = 330
 val cutoff5 = 405100

 val bracket6 = 350
 val cutoff6 = 406750

 val bracket7 = 396
 val cutoff7 = Int.MaxValue

As We Fill In Cases, We Find
a Common Pattern

 /**
 * Given:
 * an income in U.S. Dollars
 * the next lowest cutoff in U.S. Dollars
 * a tax percentage for the bracket above the cutoff
 * Returns the income tax due for the given income
 */
 def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int) = {
 require(income >= 0)
 (income - cutoff) * bracket / divisor + incomeTax(cutoff)
 } ensuring (_ >= 0)

And Now We Call This New Function to Fill
in the The Income Tax Function Template

 /**
 * Given an income in U.S. Dollars, returns the dollar value of tax
 * owed for a single tax payer, using 2014-2015 IRS tax brackets.
 */
 def incomeTax(income: Int): Int = {
 require(income >= 0)

 if (income <= cutoff0) {
 bracket0
 } else if (income <= cutoff1) {
 incomeTaxForBracket(income, cutoff0, bracket1)
 } else if (income <= cutoff2) {
 incomeTaxForBracket(income, cutoff1, bracket2)
 } else if (income <= cutoff3) {
 incomeTaxForBracket(income, cutoff2, bracket3)
 } else if (income <= cutoff4) {
 incomeTaxForBracket(income, cutoff3, bracket4)
 } else if (income <= cutoff5) {
 incomeTaxForBracket(income, cutoff4, bracket5)
 } else if (income <= cutoff6) {
 incomeTaxForBracket(income, cutoff5, bracket6)
 } else { // income > cutoff6
 incomeTaxForBracket(income, cutoff6, bracket7)
 }
 } ensuring (_ >= 0)

Remarks On Conditional
Functions

• The clauses in a conditional function need not all
have the same form

• Avoid factoring out code into a helper function until
there is more than one place to call the helper

• There is more we can factor out in this example,
but first we will need more powerful language
features (stay tuned)

Compound Datatypes

Compound Datatypes

• Although many computations can be performed on
primitive data types, it is often useful to combine
data into larger structures

• We call all data of this form compound data

• The two simplest compound datatypes in Core
Scala are tuples and arrays

Tuple Values
• A tuple value contains a sequence of values

• There is one empty tuple ()

• Tuples of length one do not exist (why?)

• The value type of a tuple is simply the tuple of the
corresponding value types

(v1, …, vN)

(T1, …, TN)

Tuple Types
• The empty tuple has the special type Unit

• The static type of a tuple expression:

(e1, … eN)

is

(T1, …, TN)

where

e1: T1, … eN: TN

Tuple Types

• Tuple types allow us to combine data of distinct
types. For example:

(Int, Boolean, String)

• However, tuple types restrict the length of any
corresponding tuple value

Accessing Tuple Elements
• We can access the kth element of an expression e with static type

(T1, …, TN) using the syntax:

e._k

• The static type of this expression is Tk

• Note that tuples are 1-indexed

• Example:

(1,2,3)._2 ↦ 2

Accessing Tuple Elements

• We can access the elements of a tuple using
match expressions

• We add the following syntactic form to our
definition of patterns

(Pattern1, … , PatternN)

• We call this new syntactic form a tuple pattern

Accessing Tuple Elements

• A tuple matches a tuple pattern iff each element of
the tuple matches a corresponding element of the
tuple pattern

Income Tax Revisited

 def incomeTaxForBracketCutoff(income: Int, bracketCutoff: (Int, Int)) = {
 require(income >= 0)

 bracketCutoff match {
 case (bracket, cutoff) => {
 (income - cutoff) * bracket /
 divisor + incomeTax(cutoff)
 }
 }
 } ensuring (_ >= 0)

Tuple Types and Arrow
Types

• We can now view every arrow type as taking
exactly one parameter:

• Example:

(Int, String, Boolean) ! Int

Tuple Types and Arrow
Types

• We can also use tuple types to denote that a
function returns “multiple values”:

• Example:

(Int, String, Boolean) ! (Int, Double)

Array Values

• An array is a sequence of values all of the same
value type

Array(1,2,3)

Array Types
• If the elements of an array value are of type T then

the array is of type Array[T]

• If the expressions e1, … , eN are of static type T
then the expression

Array(e1, …, eN)

• has static type

Array[T]

Array Types

• Array types require that all elements of an array
share a common type

• However, array types match array values of any
length

• Contrast with tuple types

Accessing Array Values
• We can access the kth element of an expression of type
Array[T] with the syntax:

expr(k)

• The static type of this expression is T

• Note that arrays are zero-indexed

• Example:

Array(1,2,3)(2) ↦ 3

Accessing Array Elements

• We can access the elements of an array using
match expressions

• We add the following syntactic form to our
definition of patterns:

Array(Pattern1, … , PatternN)

• We call this new syntactic form an array pattern

Accessing Array Elements

• An array matches an array pattern iff each element
of the array matches a corresponding element of
the array pattern

Accessing Array Elements

 def sumOfSquares(coordinates: Array[Int]) = {
 coordinates match {
 case Array(x,y,z) => x*x + y*y + z*z
 }
 }

Structural Data

Structural Data
• Tuples and arrays allow us to combine multiple

primitive values into a single data value

• However,

• They do not allow us to attach names to the
constituent elements

• They do not allow us to distinguish elements of
conceptually distinct datatypes

Case Classes

• We can think of a case class as a tuple with its own
type and accessors for its elements

Case Classes

case class Coordinate(x: Int, y: Int)

Simple Syntax for Case
Classes

case class Name(field1: Type1, …, fieldN: TypeN)

Creating Instances of a
Case Class

• We construct new instances of a case class

case class C(field1: Type1, …, fieldN: TypeN)

• with the syntax

C(expr1, …, exprN)

• To reduce this expression, reduce each argument exprK to a
value vK, forming the value C(v1, …, vN)

• If the types of expr1,…,exprN match the types of the
corresponding fields, then this expression has type C

Accessing Fields of a Case
Class

• Given a case class:

• We can access field with name fieldK of C with the
expression syntax:

C.fieldK

• The static type of this expression is TypeK

case class C(field1: Type1, …, fieldN: TypeN)

Accessing Fields of a Case
Class

 def magnitude(coordinate: Coordinate) = {
 coordinate.x * coordinate.x +
 coordinate.y * coordinate.y
 }

Accessing Class Elements

• We can access the elements of a case class
instance using match expressions

• For each case class, we add the following
syntactic form to our definition of patterns

C(Pattern1, … , PatternN)

• We call this new syntactic form a class pattern

Accessing Case Class
Elements

• An instance of a case class C(v1, …, vN)
matches a class pattern C(P1, …, PN) iff

• The class name is identical to the class pattern
name

• Each element of the instance matches a
corresponding element of the class pattern

Accessing Case Class
Elements

 def magnitude(coordinate: Coordinate) = {
 coordinate match {
 case Coordinate(x,y) => x*x + y*y
 }
 }

Class Methods

• Methods are functions defined in the body of a
class definition. They have direct access to the
members of a class instance

• Syntactically, they are placed between braces,
after the class parameters

Class Methods

case class C(field1: Type1, …, fieldN: TypeN) {
def m1(x11: TypeP11, … xK1: TypePk1): TypeR11 =
 expr
…
def mJ(x1J: TypeP1J, … xKJ: TypePkJ): TypeR1J =
 expr
}

Method Definitions

case class Coordinate(x: Int, y: Int) {
 def magnitude() = x*x + y*y
}

Applying a Class Method
• Given a class definition:

class C(p1:T1, …, pk:Tk) { …

 def m(param1:T11, paramN:T1N):T = e

 …

}

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing parameters p1, …, pk with v1,…,vk and
param1, …, paramN with arg1, …, argN

Applying a Class Method

Coordinate(5,3).magnitude() ↦
5*5 + 3*3 ↦
25 + 9 ↦

34

Nested Pattern Matching

 def dotProduct(c1: Coordinate, c2: Coordinate) = {
 (c1, c2) match {
 case (Coordinate(x1,y1), Coordinate(x2,y2)) =>

x1*x2 + y1*y2
 }
 }

