Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Announcements

e |tis strongly recommended that you follow the instructions for checking out
your turnin repository as soon as possible:

Follow the instructions under Homework Submission Guide at the Course
Website

Submit a hw_0 folder with a single file HelloWorld.txt and a single line of
text, Hello, world!

This submission is not for credit
We will let you know if we have not received your submission

You will be responsible for successfully submitting your hw_1 assignment
using turnin

Please bring problems to our attention as soon as possible

https://wiki.rice.edu/confluence/display/PARPROG/311TurninGuide
https://wiki.rice.edu/confluence/display/PARPROG/COMP311

Announcements

Two Sigma internships and full-time positions
available (Houston and New York Offices)

Type Checking

e SO far, we have been rigorous about computation of
programs, but we have relied on intuition for static
type checking

* We can provide a static semantics tor Core Scala
along with our dynamic semantics

The Substitution Model of
Type Checking

* Jo type check a value v, replace v with its value type

1.003 = Double

* To type check a constant ¢, reduce the defining expression of ¢ to a static type T,
then replace all occurrences of ¢ with T

p1 = 3.14 =

p1 : Double

p1 * radius * radius =

Double * radius * radius

The Substitution Model of
Type Checking

* To type check a function definition:

* Type check the body of the definition, replacing all occurrences of each
parameter with the corresponding parameter type

* Jo type check the occurrence of a function name:

* Replace the name with an arrow type, where the parameter types of the
function are to the left of the arrow and the return type is to the right

square(x: Double): Double = x * X

square(3.14) =

(Double -» Double)(3.14)

The Substitution Model of
Type Checking

* Jo type check the application of a function to
arguments:

 Reduce the function to an arrow type

 Reduce the arguments, left to right, to static
types

e |f the parameter types match the corresponding

argument types, reduce the application to the
return type

The Substitution Model of
Type Checking

square(3.14) =
(Double » Double)(3.14) =
(Double -» Double)(Double) =

Double

Conditional Functions
On Point Values

Conditional Functions On
Point Values

e Often the cases on a conditional function must test
for equality rather than whether values fall in a
range

* This is especially common with String values
* \What about Boolean values?

* Double values should not be tested this way
(why’?)

Example: Days in a Montn

e (Given the name of a month, we want to return the
number of days

Data Analysis and Definition

* \We use Strings to denote months and Ints for the
number of days

Contract

* We state the preconditions in documentation:

/**
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {

} ensuring (_ <= 31)

* How can we improve the precondition”? What data
types would we want?

A Function Template for Conditional
Functions on Point Values

/**
* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {
month match {
case .. => ..

, -
} ensuring (_ <= 31)

Syntax for Match

expr@® match {
case Pattern => exprl

case Pattern => exprN

¥

Primitive Value Patterns

* A primitive value pattern is either:
* A primitive value
e A free parameter

* [The special pattern _

Matching a Primitive Value
With a Pattern

* A primitive value v matches:

e |tself

e A free parameter

he special pattern _

« Should only be used as the final clause of a
match (why?)

Meaning of a Match
EXpression

* Jo reduce a match expression:

expr@® match {
case Pattern => exprl

case Pattern => exprN

3
 Reduce expr0 to a value v

e Find the first pattern k matching v (if it exists) and reduce to
exprK (replacing all occurrences of k with v if K is a free
parameter)

e Failure to match a pattern results in a new form of exceptional
condition

Using Match for Point Value
_ Matching

* Given a string identifying a month,
* with the first (and only the first) letter capitalized,
* returns the number of days in that month
* for an ordinary year (non-leap) year.
*/
def days(month: String): Int = {
month match {
case "January" => 31
case "February" => 28
case "March" => 31
case "April" => 30
case "May" => 31
case "June" => 30
case "July" => 31
case "August" => 31
case "September" => 30
case "October" => 31
case "November" => 30
case "December" => 31

¥
} ensuring (_ <= 31)

Reducing Match

days(“September”)

g

“September” match {

case
case
case
case
case
case
case
case
case
case
case
case

}

} ensuring (_ <=

"January" => 31
"February" => 28
"March" => 31
"April" => 30
"May" => 31
"June" => 30
"July" => 31

"August" => 31
"September" => 30
"October" => 31
"November" => 30
"December" => 31

31)

>

30

A Match With a Free
Parameter

def plural(word: String): String = {
word match {
case "deer" => "deer"
case "fish" => "fish"
case "mouse" => "mice"
case X => X + 's"

Conditional Functions
On Intervals

Conditional Functions On
INntervals

» Often a computation falls into distinct cases
depending on which of a finite set of intervals a
value falls into

* |n such cases, it can help to break the number
ine Iinto distinct regions that we must handle
separately:

I I I I
>
I I I I

Designing Conditional
Functions

o Example: Graduated Income Tax (Single Filer):
e Upto $9,075: 10%
« $9,075 to $36,900: 15%
« $36,901 to $89,350: 25%
« $89,351 to 186,350: 28%
« $186,351 to $405,100: 33%
« $405,101 to $406,750: 35%
e $405,751 or more: 39.6%

« We follow the Design Recipe

Graduated Income Tax:
Data Analysis and Detfinition

* We use Ints to denote U.S. Dollar values and tax
percentages (using integer division by 100 as a
last step)

* Both income and tax should be non-negative

e \We break the number line into the relevant intervals

10% 15% 25%
$0 $9075 $36.900

Contract

/**
* Given an income 1n U.S. Dollars,
* returns the dollar value of tax
* owed for a single tax payer, using
* 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int) = {
require(income >= 0)

} ensuring (_ >= 0)

Function Application
Examples

 We should develop at least one example per case,
as well as borderline cases

100 = 1ncomeTax(1000)
907 = 1ncomeTax(9075)

907 + 138 = 1ncomeTax(10000)

Our Function Template for
Conditional Functions

* Given an income in U.S. Dollars,
* returns the dollar value of tax
* owed for a single tax payer, using
* 2014-2015 IRS tax brackets.
*/
def incomeTax(income: Int): Int = {
require(income >= 0)
if (income <= cutoff@) {
} else if (income <= cutoffl) {
} else if (income <= cutoff2) {
1 else if (income <= cutoff3) {
} else if (income <= cutoff4) {
1 else if (income <= cutoff5) {
1 else if (income <= cutoff6) {
} else { // income > cutoffb

, .

} ensuring (_ >= 0)

Detining Our Constant
Values in One Place

val bracket® = 0
val cutoff@ = 0

val bracketl = 100
val cutoffl = 9075

val bracketZ2 = 150
val cutoff2 = 36900

val bracket3 = 250
val cutoff3 = 89350

val bracket4 = 280
val cutoff4 = 186350

val bracket5 = 330
val cutoff5 = 405100

val bracketo = 350
val cutoff6o = 406750

val bracket?7 = 396
val cutoff?7 = Int.MaxValue

As We Fill In Cases, We Find
a Common Pattern

/**

* Given:

* an 1income 1in U.S. Dollars

* the next lowest cutoff in U.S. Dollars

* a tax percentage for the bracket above the cutoff

* Returns the income tax due for the given income

*/
def incomeTaxForBracket(income: Int, cutoff: Int, bracket: Int) = {

require(income >= 0)

(income - cutoff) * bracket / divisor + incomeTax(cutoff)

} ensuring (_ >= 0)

And Now We Call This New Functior
N the The Income Tax Function Tenr

/**

to Fill
plate

* Given an income in U.S. Dollars, returns the dollar value of tax

* owed for a single tax payer, using 2014-2015 IRS tax brackets.

*/
def incomeTax(income: Int): Int
require(income >= 0)

1f (income <= cutoff@) {
bracket®
} else if (income <= cutoffl)
incomeTaxForBracket(income,
} else if (income <= cutoff?)
incomeTaxForBracket(income,
} else if (income <= cutoff3)
incomeTaxForBracket(income,
} else if (income <= cutoff4)
incomeTaxForBracket(income,
} else if (income <= cutoff5)
incomeTaxForBracket(income,
} else if (income <= cutoffo6)
incomeTaxForBracket(income,
} else { // income > cutoff6
incomeTaxForBracket(income,

}

} ensuring (_ >= 0)

= {

{
cutoffo,

{
cutoffl,

{
cutoff?2,

{
cutoff3,

{
cutoff4,

{
cutoff5,

cutoffo,

bracketl)
bracket?2)
bracket3)
bracket4)
bracket5)
bracket6)

bracket?7)

Remarks On Conditional
Functions

e The clauses in a conditional function need not all
have the same form

e Avoid factoring out code into a helper function until
there is more than one place to call the helper

 There is more we can factor out in this example,
but first we will need more powerful language
features (stay tuned)

Compound Datatypes

Compound Datatypes

e Although many computations can be performed on
orimitive data types, it is often useful to combine
data into larger structures

 We call all data of this form compound data

* The two simplest compound datatypes in Core
Scala are tuples and arrays

Tuple Values

A tuple value contains a sequence of values
(vl, .., vN)

There is one empty tuple ()

Tuples of length one do not exist (why?)

The value type of a tuple is simply the tuple of the
corresponding value types

(T1, .., TN)

Tuple lypes

* The empty tuple has the special type Unit
* [he static type of a tuple expression:
(el, .. eN)
S
(T1, .., TN)
where

el: T1, .. eN: IN

Tuple lypes

* Juple types allow us to combine data of distinct
types. For example:

(Int, Boolean, String)

 However, tuple types restrict the length of any
corresponding tuple value

Accessing luple Elements

 We can access the kth element of an expression e with static type
(T1, ..., TN) using the syntax:

e._k

* The static type of this expression is Tk

* Note that tuples are 1-indexed

 Example:

(1,2,3)..2 » 2

Accessing luple Elements

* WWe can access the elements of a tuple using
match expressions

* We add the following syntactic form to our
definition of patterns

(Patternl, .. , PatternN)

 We call this new syntactic form a tuple pattern

Accessing luple Elements

* A tuple matches a tuple pattern iff each element of
the tuple matches a corresponding element of the
tuple pattern

lIncome Tax Revisited

def incomeTaxForBracketCutoff(income: Int, bracketCutoff: (Int, Int)) = {
require(income >= Q)

bracketCutoff match {
case (bracket, cutoff) => {
(income - cutoff) * bracket /
divisor + incomeTax(cutoff)

¥
¥

} ensuring (_ >= 0)

Tuple lypes and Arrow
Types

* \WWe can now view every arrow type as taking
exactly one parameter:

 Example:

(Int, String, Boolean) » Int

Tuple lypes and Arrow
Types

 We can also use tuple types to denote that a
function returns “multiple values™:

 Example:

(Int, String, Boolean) » (Int, Double)

Array Values

 An array is a sequence of values all of the same
value type

Array(1,2,3)

Array lypes

e |f the elements of an array value are of type T then
the array is of type Array|T]

e |f the expressions el, .. , eNare of static type T
then the expression

Array(el, .., eN)

* has static type

Array[T]

Array lypes

e Array types require that all elements of an array
share a common type

 However, array types match array values of any
length

o Contrast with tuple types

Accessing Array Values

 We can access the kth element of an expression of type
Array|[T] with the syntax:

expr(k)
* The static type of this expressionis T

 Note that arrays are zero-indexed

e Example:

Array(1,2,3)(2) » 3

Accessing Array Elements

* We can access the elements of an array using
match expressions

* We add the following syntactic form to our
definition of patterns:

Array(Patternl, .. , PatternN)

 We call this new syntactic form an array pattern

Accessing Array Elements

 An array matches an array pattern iff each element
of the array matches a corresponding element of
the array pattern

Accessing Array Elements

def sumOfSquares(coordinates: Array[Int]) = {
coordinates match {
case Array(x,y,z) => X*x + y*y + z*z
¥
¥

Structural Data

Structural Data

* Tuples and arrays allow us to combine multiple
primitive values into a single data value

e However,

* They do not allow us to attach names to the
constituent elements

* They do not allow us to distinguish elements of
conceptually distinct datatypes

Case Classes

 We can think of a case class as a tuple with its own
type and accessors for its elements

Case Classes

case class Coordinate(x: Int, y: Int)

Simple Syntax for Case
Classes

case class Name(fieldl: Typel, .., fieldN: TypeN)

Creating Instances of a
Case Class

We construct new instances of a case class

case class C(fieldl: Typel, .., fieldN: TypeN)
with the syntax
C(exprl, .., exprN)

To reduce this expression, reduce each argument exprK to a
value vK, forming the value C(vl, .., VvN)

If the types of exprl,..,exprN match the types of the
corresponding fields, then this expression has type C

Accessing Fields of a Case
Class

e (3lven a case class:

case class C(fieldl: Typel, .., fieldN: TypeN)

 We can access field with name fieldK of C with the
expression syntax:

C.fieldK

* The static type of this expression is TypeK

Accessing Fields of a Case
Class

def magnitude(coordinate: Coordinate) = {
coordinate.x * coordinate.x +
coordinate.y * coordinate.y

¥

Accessing Class Elements

e \We can access the elements of a case class
iInstance using match expressions

* For each case class, we add the following
syntactic form to our definition of patterns

C(Patternl, .. , PatternN)

 We call this new syntactic form a class pattern

Accessing Case Class
Elements

* An instance of a case class C(vl, .., VvN)
matches a class pattern C(P1, .., PN) iff

* The class name Is identical to the class pattern
name

 Each element of the instance matches a
corresponding element of the class pattern

Accessing Case Class
Elements

def magnitude(coordinate: Coordinate) = {
coordinate match {
case Coordinate(x,y) => x*x + y*y

¥
¥

Class Methods

 Methods are functions defined in the body of a
class definition. They have direct access to the
members of a class instance

e Syntactically, they are placed between braces,
after the class parameters

Class Methods

case class C(fieldl: Typel, .., fieldN: TypeN) {
def ml(x11l: TypeP1l1l, .. xK1: TypePkl): TypeR1ll =
expr

def mJ(x1J: TypeP1], .. xKJ: TypePk]): TypeR1l] =
expr

h

Method Definitions

case class Coordinate(x: Int, y: Int) {
def magnitude() = x*x + y*y
}

Applying a Class Method

e (Given a class definition:

class C(pl:T1, .., pk:Tk) { ..

def m(paraml:T11, paramN:TIN):T = e

¥

e To reduce the application of a method:
C(vl, .., vk).mCargl, .., argN)
* Reduce the receiver and arguments, left to right

* Reduce the body of m, replacing parameters p1, .., pkwithvl,..,vk and
paraml, .., paramN with argl, .., argN

Applying a Class Method

Coordinate(5,3).magnitude() -
5¥5 + 3*3 o
25 + 9
34

Nested Pattern Matching

def dotProduct(cl: Coordinate, cZ2: Coordinate) = {
(cl, c2) match {
case (Coordinate(x1l,yl), Coordinate(xZ2,y2)) =>
x1*x2 + yl*yZ2
}
}

