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Some Language Features 
You Might Find Useful for 

The Homework



Requires Clauses on Class 
Constructors

case class Name(field1: Type1, …, fieldN: TypeN)
    require (boolean-expression)

• Checked on every constructor call 

• Because case class instances are immutable, these 
ensures the property holds for the lifetime of an instance



Equals on Case Classes

• The equals method on a case class instance 
checks for structural equality with its argument: 

Rational(4,6).equals(Rational(4,6)) ↦

true



Equals on Case Classes

• Note that equals is a binary method, and so we can 
also write this expression as: 

Rational(4,6) equals Rational(4,6) ↦

true



Equals on Case Classes

• Of course, the built in equals method does not 
check for mathematical equality: 

Rational(4,6) equals Rational(2,3) ↦

false



Equals on Case Classes

• Why is this definition of equality acceptable on 
case classes? 

• What other definition is available to us? 

Rational(4,6) equals Rational(2,3) ↦

false



Short-Circuiting And and Or 
Operators

• Just as we have defined a short-circuiting if-then-
else operator, we can define short-circuiting and/or 
operators: 

&&     ||

• How do we define the static and dynamic 
semantics of these operators? 

• When are they useful?



Calling and Defining Parameterless 
Methods Without Parentheses

def toString() = { … }

vs. 

def toString = { … }



Calling and Defining Parameterless 
Methods Without Parentheses

Rational(4,6).toString()

vs. 

Rational(4,6).toString



The Uniform Access 
Principle

• Client code should not be affected by whether an 
attribute is defined as a field or a method 

• Only applies to immutable methods 

• Can be strange even for some immutable 
methods (consider reduce)



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{e1
…

 eN}



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{ 1 == 1
  2 == 3
  1 + 2 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{  true
  2 == 3
  1 + 2 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{ 2 == 3
  1 + 2 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{ false
  1 + 2 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{ 1 + 2 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{ 3 }



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

  3 



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

   {
 e1
 …
 eN
}



Block Expressions
• The syntactic form 

• is also an expression.  

• Evaluate and remove top to bottom until the last expression 

• Reduce to the value of the last expression

{e1;…;eN}



Val Expressions

The syntactic form 

val x = e

is also an expression with static type Unit



Val Expressions
To reduce 

val x = e

in a block expression: 

Reduce e to value v 

Remove the binding expression and replace all free 
occurrences of x in the remainder of the block 
expression with v



Otherwise, Please Restrict Your 
Homework Submission to Features 

Covered in Class

• These should be the only import statements in your 
program: 

import junit.framework.TestCase

import junit.framework.Assert._



Abstract Datatypes



Abstract Datatypes
• Often, we wish to abstract over a collection of 

compound datatypes that share common 
properties 

• For example, we might wish to define an abstract 
datatype for shapes, with separate case classes for 
each of several shapes 

• For this purpose, we define an abstract class and 
use subclassing



Abstract Datatypes

abstract class Shape 
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape



Recall Our Design Recipe
• Analysis: What are the objects in the problem domain? What 

data types we will use to represent them?  

• Contract: What is name of our functions and their parameters? 
What are the requirements of the data they consume and 
produce? What is the meaning of what our program computes? 

• Repeat until we are confident in our program’s correctness 

• Write some tests  

• Sketch a function template 

• Define the function



Recall Our Design Recipe
• Analysis: This is the stage where we would discover we wish to 

model our problem domain with functions over an abstract 
datatype  

• Contract: What contract holds for each function? Do additional 
constraints and assurances hold for specific subclasses?  

• Repeat until we are confident in our program’s correctness 

• Write some tests: Same as before  

• Sketch a function template: This needs re-examination 

• Define the function



The Design Recipe for 
Abstract Datatypes

• Our Function Template for computing with abstract 
datatypes depends on answering the following 
questions: 

• Do I expect to eventually add more subclasses? 

• Do I expect to eventually add more functions?



Case 1 
We Expect Few New Functions 

But Many New Variants 



Case 1: We Expect Few New 
Functions But Many New Variants 

• This is a case that object-oriented programming handles well 

• Classic example domains: GUI Programming, Productivity 
Apps, Graphics, Games 

• Declare an abstract method in our superclass and provide a 
concrete definition for each sub-class 

a.k.a.,  

The Union Pattern (for the datatype definitions) 

The Template Method Pattern (for the function definitions)



Abstract Datatypes

abstract class Shape {
  def area(): Double
}



case class Circle(radius: Double) extends Shape {
  val pi = 3.14
  
  def area() = pi * radius * radius

}

Abstract Datatypes



case class Square(side: Double) extends Shape {

  def area() = side * side

}

Abstract Datatypes



case class Rectangle(length: Double, width: Double) 
extends Shape {

  def area() = length * width

}

Abstract Datatypes



How Do Abstract Classes Affect 
Our Type Checking Rules?

• When type checking a class definition, ensure that 
all abstract methods declared in the superclass are 
actually defined, with compatible method types 

• When type checking a collection of class 
definitions, ensure that there are no cycles in the 
class hierarchy!



How Do Abstract Classes Affect 
Our Type Checking Rules?

• If a method is called on a receiver whose static 
type is an abstract class, extract an arrow type 
from the declaration (just as with a definition in a 
concrete class) 

expr.area() ↦

Shape.area() ↦

() ! Double



Type Checking Arguments 
to a Method Call

• The static types of an argument might no longer be 
an exact match: 

(Let us set aside the concrete definitions of 
makeLikeMe for awhile)

abstract class Shape {
  def area(): Double
  
  def makeLikeMe(that: Shape): Shape
}



Now Consider a Call to 
Matcher With Concrete Types

Circle(1).makeLikeMe(Circle(2)) ⇒

Circle.makeLikeMe(Circle) ⇒

(Shape ! Shape)(Circle)

And now we are stuck…



Recall The Substitution 
Model of Type Checking

• To type check the application of a function to 
arguments: 

• Reduce the function to an arrow type 

• Reduce the arguments, left to right, to static 
types 

• If the argument types match the corresponding 
parameter types, reduce the application to the 
return type



Subtyping
• We need to widen our definition of matching a type to 

include subtyping: 

• A class is a subtype of the class it extends 

• Subtyping is Reflexive:  

A <: A

• Subtyping is Transitive:  

If  A <: B  and  B <: C then  A <: C



Subtyping

• All types are a subtype of type Any 

• Type Nothing is a subtype of all types 

• There is no value with value type Nothing



Recall The Substitution 
Model of Type Checking

• To type check the application of a function to 
arguments: 

• Reduce the function to an arrow type 

• Reduce the arguments, left to right, to static 
types 

• If the argument types are subtypes of the 
corresponding parameter types, reduce the 
application to the return type



Applying a Class Method 
Revisited

• To reduce the application of a method: 

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right 

• Reduce the body of m, replacing constructor 
parameters with constructor arguments and 
method parameters with method arguments



Applying a Class Method 
Revisited

• To reduce the application of a method: 

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right 

• Find the body of m in C and reduce to that, 
replacing constructor parameters with 
constructor arguments and method parameters 
with method arguments



The Body of m 

• To find the body of method m in type C: 

• Find the definition of m in the body of C, if it exists 

• Otherwise, find the body of m in the immediate 
superclass of C



Overriding Methods
• Our new rules also handle method overriding! 

• Use overriding when: 

• Factoring out a method definition common to several 
variants 

• Suppose several shapes compute their area in the 
same way 

• Augmenting the behavior of classes we do not 
maintain



Overriding Methods

• Scala requires that overriding method definitions 
include the keyword overrides

• Why require this extra keyword?



The Fragile Base Class 
Problem

• Suppose I define a base class Shape 

• Later a client extends Shape with class Triangle 
and defines a private method position to record 
the position of one point of a triangle 

• Yet later, I release a new version of my class Shape 
with a private method position to record the 
position of the center of the shape



The Fragile Base Class 
Problem

• This is an example of accidental overriding 

• The overrides keyword catches the problem 
when the subclass Triangle is recompiled 
against the new version of Shape



Two Occasions to Consider 
Overriding

• The default equals methods on case classes: 

Rational(4,6) equals Rational(2,3)



Two Occasions to Consider 
Overriding

• The default toString methods on case classes: 

Rational(4,6) + Rational(2,3) ↦

Rational(4,3)

What is printed during Interactions is determined by toString



Two Occasions to Consider 
Overriding

• The default toString methods on case classes: 

Rational(4,6) + Rational(2,3) ↦

4/3

What is printed during Interactions is determined by toString



Defining and Overriding 
Methods

• Recall our rule for abstract methods 

• When type checking a class definition, ensure that 
all abstract methods declared in the superclass are 
actually defined, with compatible method types 

• We need to: 

• Augment our rule to mention overriding (this is easy) 

• Clarify “compatible method types”



Defining and Overriding 
Methods

• When type checking a class definition, ensure that: 

• All abstract methods declared in the superclass 
are actually defined, with compatible method 
types 

• The types of all overriding methods are 
compatible with the types of the methods they 
override



Defining and Overriding 
Methods

• When type checking a class definition, ensure that: 

• All abstract methods declared in the superclass 
are actually defined, and their types are 
subtypes of the method types in the 
corresponding declarations 

• The types of all overriding methods are subtypes 
of the method types they override



Arrow Types and Subtyping

• How do we define subtyping on arrow types? 

• Historically this has been a painful source of bugs 
in object-oriented languages



Arrow Types and Subtyping

• The substitution principle of arrow typing: 

• If a function f has type S!T 

and S!T <: U!V 

then f can be safely used in any context 
requiring a function of type U!V



Consider an Example

• So, makeLikeMe has type Shape ! Shape

• We are required to define it in all subclasses of Shape

abstract class Shape {
  def area(): Double
  
  def makeLikeMe(that: Shape): Shape
}



Consider a Calling Context

• What are some parameter types we can safely 
declare for makeLikeMe when defining it in class 
Circle? 

• What are some return types we could safely declare?

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

• Could class Circle define the parameter type of 
makeLikeMe to be Circle? 

// NOT ALLOWED  
def makeLikeMe(that: Circle): Shape = that 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

And now we are stuck…



Consider a Calling Context

• Could class Circle define the parameter type of 
makeLikeMe to be Any? 

// This abides by our substitution principle
def makeLikeMe(that: Any): Shape = this 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14



Consider a Calling Context

• Could class Circle define the return type of 
makeLikeMe to be Any? 

// NOT ALLOWED  
def makeLikeMe(that: Any): Any = “what’s up?” 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

“what’s up?”.area ↦

And now we are stuck…



Consider a Calling Context

• Could class Circle define the return type of 
makeLikeMe to be Circle? 

// This abides by our substitution principle
def isSimilarTo(that: Any): Circle = this 

  def matcher(shape1: Shape, shape2: Shape) = {
    shape1.makeLikeMe(shape2).area
  }



Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14



Subtyping for Arrow Types

• A type S!T is a subtype of U!V iff 

• U is a subtype of S 

• T is a subtype of V

• We say that arrow types are contravariant in their 
parameter type and covariant in their return type



A Limitation on Subtyping of 
Method Types in Scala

• Parameter types of overriding methods must match 
exactly in Scala 

• This restriction is shared with Java and is a 
limitation of the JVM 

• We will see other uses of arrow types in Scala 
where this restriction is not in place



Why Methods?
• Remember we are in Case 1: We Expect Few New 

Functions But Many New Variants 

• How do methods help with this case? 

• All functions we support are declared in our abstract 
class 

• New variants can be added without changing old 
code:  

• Simply implement all the declared methods



Disadvantages of Methods

• If new functionality is added, every class definition 
must be modified to include it



Throwing And 
Catching Exceptions



We Can Throw and Catch 
Exceptions as in Java

  def assertConstructorFail(m:Int, n:Int) = {
    try {
      Rational(m,n)
      fail()
    }
    catch {
      case e: IllegalArgumentException => {
      }
    }
  }



Syntax For Try/Catch

   try expr
    catch {
      case Pattern => expr

…
    }



Syntax For Throw

throw expr



Static Semantics For Throw
If e has static type T and  

T <: Throwable

then 

 throw e

has static type 

Nothing



Static Semantics For Try/
Catch

• Given an expression e: 

• Where expr0: T0, expr1: T1, …, exprN: TN,

• The type of e is the least type T such that: 

T <: T0, T <: T1,…,T <: TN

   try expr0
    catch {
      case Pattern => expr1

…
      case Pattern => exprN
    }



Static Semantics For Try/
Catch

• The type of e is the least type T such that: 

T <: T0, T <: T1,…,T <: TN

• Note that we can now use this approach to go back and 
define better static typing rules for if-else and match 
expressions



Dynamic Semantics For 
Throw

• To explain the semantics of throw, we must introduce new 
terminology 

• Let the continuation of an expression e refer to all that 
remains to be done in a computation after e is reduced 

• We can think of a continuation as an expression with a 
“hole” in it, corresponding to e 

• Equivalently, we can think of a continuation as function  
that takes a parameter, corresponding to the result of 
evaluating e



Example Continuation

matcher(Circle(1), Square(1))



Example Continuation

matcher(Circle(1), Square(1))

Let this be our expression e



Example Continuation

matcher(         , Square(1))

Then this is the continuation of e



Example Continuation

matcher(Circle(1), Square(1))

Once e is reduce to a value, the box is filled in, 
and the continuation can be reduced



Reducing a Throw 
Expression

• To reduce a throw expression: 

• Reduce e to a value v 

• Replace the continuation of the throw expression 
with the special expression throw v

throw e



Reducing a Try/Catch
• To reduce a try/catch expression: 

   try expr0
    catch {
      case Pattern => expr1

…
      case Pattern => exprN
    }



Reducing a Try/Catch
• Set aside the continuation C of the try/catch 

• Reduce the body of the try in a special continuation D 

• If D reduces to throw v: 

• Restore the continuation C 

• Try matching v against each pattern in the catch clause 

• If a match is found, evaluate the body of the matching case 

• Otherwise, reduce to throw v



Case 2 
We Expect Many New 

Functions But Few New Variants 



Case 2: We Expect Many New 
Functions But Few New Variants 
• This is a case the traditional functional 

programming handles well 

• Classic example domains: Compilers, theorem 
provers, numeric algorithms, machine learning 

• Declare a top-level function with cases for each 
data variant 

a.k.a., The Visitor Pattern



Again We Turn to Pattern 
Matching

  val pi = 3.14
  
  def area(shape: Shape) = {
    shape match {
      case Circle(r) => pi * r * r
      case Square(x) => x * x
      case Rectangle(x,y) => x * y
    }
  }



We Can Define Arbitrary Functions 
Without Modifying Data Definitions
  def makeLikeFirst(shape0: Shape, shape1: Shape) = {
    (shape0, shape1) match {
      case (Circle(r), Square(s)) => Circle(s)
      case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

      case (Square(s), Circle(r)) => Square(r)
      case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

      case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
      case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

      case _ => shape1
    }
  }



But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype

  val pi = 3.14
  
  def area(shape: Shape) = {
    shape match {
      case Circle(r) => pi * r * r
      case Square(x) => x * x
      case Rectangle(x,y) => x * y

case Triangle(b,h) => b*h/2
    }
  }



  def makeLikeFirst(shape0: Shape, shape1: Shape) = {
    (shape0, shape1) match {
      case (Circle(r), Square(s)) => Circle(s)
      case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Circle(r), Triangle(b,h)) => Circle(b)

      case (Square(s), Circle(r)) => Square(r)
      case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Square(s), Triangle(b,h)) => Square(b+h/2)

      case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
      case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

      case _ => shape1
    }
  }

But A New Data Variant Requires Us To 
Modify All Functions Over the Datatype


