
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Homework 1
• Please submit your homework via the turnin

system, in a folder named hw_1

• The specific files to submit are defined in the
assignments

• For each section, please turn in only your final
program resulting from completion of the section

• Think about overflow!

Please Restrict Your Homework
Submission to Features Covered in Class

Please Restrict Your Homework
Submission to Features Covered in Class

• These should be the only import statements in your
program:

import junit.framework.TestCase

import junit.framework.Assert._

• So far, we have been rigorous about computation of
programs, but we have relied on intuition for static
type checking

• We can provide a static semantics for Core Scala
along with our dynamic semantics

Type Checking

The Substitution Model of
Type Checking

• To type check a value v, replace v with its value type

1.003 ⇒ Double

• To type check a constant c, reduce the defining expression of c to a static type T,
then replace all occurrences of c with T

pi = 3.14 ⇒

pi : Double

pi * radius * radius ⇒

Double * radius * radius

The Substitution Model of
Type Checking

• To type check a function definition:

• Type check the body of the definition, replacing all occurrences of each
parameter with the corresponding parameter type

• To type check the occurrence of a function name:

• Replace the name with an arrow type, where the parameter types of the
function are to the left of the arrow and the return type is to the right

square(x: Double): Double = x * x

square(3.14) ⇒

(Double ! Double)(3.14)

The Substitution Model of
Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the argument types match the corresponding
parameter types, reduce the application to the
return type

The Substitution Model of
Type Checking

square(3.14) ⇒

(Double ! Double)(3.14) ⇒

(Double ! Double)(Double) ⇒

Double

Methods and
Operators

Syntactic Sugar For Binary
Methods

• We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
 def magnitude() = x*x + y*y

 def add(that: Coordinate) =

Coordinate(x + that.x, y + that.y)
}

Syntactic Sugar For Binary
Methods

Coordinate(1,2).add(Coordinate(3,4))
↦

Coordinate(4,6)

Syntactic Sugar For Binary
Methods

• With binary methods, we can elide the dot in a
method call

• We can also elide the enclosing parentheses
around the sole argument

Syntactic Sugar For Binary
Methods

Coordinate(1,2) add Coordinate(3,4)
↦

Coordinate(4,6)

Operator Symbols
• Scala allows the use of operator symbols in method

names

• In fact, operators are simply methods in Scala

1.+(2) → 3

Coordinates Revisited

case class Coordinate(x: Int, y: Int) {
 def magnitude() = x*x + y*y

 def +(that: Coordinate) =

Coordinate(x + that.x, y + that.y)
}

Coordinates Revisited

Coordinate(1,2) + Coordinate(3,4)
↦

Coordinate(4,6)

Requires Clauses on Class
Constructors

case class Name(field1: Type1, …, fieldN: TypeN)
 require (boolean-expression)

• Checked on every constructor call

• Because case class instances are immutable, this ensures
the property holds for the lifetime of an instance

Equals on Case Classes

• The equals method on a case class instance
checks for structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true

Equals on Case Classes

• Note that equals is a binary method, and so we can
also write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true

Equals on Case Classes

• Of course, the built in equals method does not
check for mathematical equality:

Rational(4,6) equals Rational(2,3) ↦

false

Equals on Case Classes

• Why is this definition of equality acceptable on
case classes?

• What other definition is available to us?

Rational(4,6) equals Rational(2,3) ↦

false

Short-Circuiting And and Or
Operators

• Just as we have defined a short-circuiting if-then-
else operator, we can define short-circuiting and/or
operators:

&& ||

• How do we define the static and dynamic
semantics of these operators?

• When are they useful?

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString

The Uniform Access
Principle

• Client code should not be affected by whether an
attribute is defined as a field or a method

• Only applies to immutable methods

• Can be strange even for some immutable
methods (what are some examples?)

Abstract Datatypes

Abstract Datatypes
• Often, we wish to abstract over a collection of

compound datatypes that share common
properties

• For example, we might wish to define an abstract
datatype for shapes, with separate case classes for
each of several shapes

• For this purpose, we define an abstract class and
use subclassing

Abstract Datatypes

abstract class Shape
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape

Recall Our Design Recipe
• Analysis: What are the objects in the problem domain? What

data types we will use to represent them?

• Contract: What is name of our functions and their parameters?
What are the requirements of the data they consume and
produce? What is the meaning of what our program computes?

• Repeat until we are confident in our program’s correctness

• Write some tests

• Sketch a function template

• Define the function

Recall Our Design Recipe
• Analysis: This is the stage where we would discover we wish to

model our problem domain with functions over an abstract
datatype

• Contract: What contract holds for each function? Do additional
constraints and assurances hold for specific subclasses?

• Repeat until we are confident in our program’s correctness

• Write some tests: Same as before

• Sketch a function template: This needs re-examination

• Define the function

The Design Recipe for
Abstract Datatypes

• Our Function Template for computing with abstract
datatypes depends on answering the following
questions:

• Do I expect to eventually add more subclasses?

• Do I expect to eventually add more functions?

Case 1
We Expect Few New Functions

But Many New Variants

Case 1: We Expect Few New
Functions But Many New Variants

• This is a case that object-oriented programming handles well

• Classic example domains: GUI Programming, Productivity
Apps, Graphics, Games

• Declare an abstract method in our superclass and provide a
concrete definition for each sub-class

a.k.a.,

The Union Pattern (for the datatype definitions)

The Template Method Pattern (for the function definitions)

Abstract Datatypes

abstract class Shape {
 def area(): Double
}

case class Circle(radius: Double) extends Shape {
 val pi = 3.14

 def area() = pi * radius * radius

}

Abstract Datatypes

case class Square(side: Double) extends Shape {

 def area() = side * side

}

Abstract Datatypes

case class Rectangle(length: Double, width: Double)
extends Shape {

 def area() = length * width

}

Abstract Datatypes

How Do Abstract Classes Affect
Our Type Checking Rules?

• When type checking a class definition, ensure that
all abstract methods declared in the superclass are
actually defined, with compatible method types

• When type checking a collection of class
definitions, ensure that there are no cycles in the
class hierarchy!

How Do Abstract Classes Affect
Our Type Checking Rules?

• If a method is called on a receiver whose static
type is an abstract class, extract an arrow type
from the declaration (just as with a definition in a
concrete class)

expr.area() ↦

Shape.area() ↦

() ! Double

Type Checking Arguments
to a Method Call

• The static types of an argument might no longer be
an exact match:

(Let us set aside the concrete definitions of
makeLikeMe for awhile)

abstract class Shape {
 def area(): Double

 def makeLikeMe(that: Shape): Shape
}

Now Consider a Call to
Matcher With Concrete Types

Circle(1).makeLikeMe(Circle(2)) ⇒

Circle.makeLikeMe(Circle) ⇒

(Shape ! Shape)(Circle)

And now we are stuck…

Recall The Substitution
Model of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the argument types match the corresponding
parameter types, reduce the application to the
return type

Subtyping
• We need to widen our definition of matching a type to

include subtyping:

• A class is a subtype of the class it extends

• Subtyping is Reflexive:

A <: A

• Subtyping is Transitive:

If A <: B and B <: C then A <: C

Subtyping

• All types are a subtype of type Any

• Type Nothing is a subtype of all types

• There is no value with value type Nothing

Recall The Substitution
Model of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the argument types are subtypes of the
corresponding parameter types, reduce the
application to the return type

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor
parameters with constructor arguments and
method parameters with method arguments

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with
constructor arguments and method parameters
with method arguments

The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate
superclass of C

