Comp 311
 Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Comp 311 Homework 1 Hours Spent

Comp 311 Homework 1 More Time Needed

Comp 311 Homework 1 Workload

Comp 311 Homework 1 Helpful

Comp 311 Homework 1 Enjoyable

Comp 311 Ease of Following Lectures

Comp 311 Pace

Comp 311 Enjoyable

Actions

- Switch to two week assignments
- Double the weighting on subsequent assignments
- Keep Thursday at 2:30pm deadline

Importing a Member of a Package

import scala.collection.immutable.List

Importing Multiple Members of a Package

import scala.collection.immutable.\{List, Vector\}

Importing and Renaming Members of a Package

import scala.collection.immutable.\{List=>SList, Vector\}

Importing All Members of a Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

Combining Notations

import scala.collection.immutable.\{_\}

same meaning as:
import scala.collection.immutable._

Combining Notations

import scala.collection.immutable.\{List=>SList,_\}

Imports all members of the package but renames
List to SList

Combining Notations

import scala.collection.immutable.\{List=>_,_\}

Imports all members of the package except for
List

Importing a Package

import scala.collection.immutable

Now sub-packages can be denoted by shorter names:
immutable.List

Importing and Renaming Packages

import scala.collection.\{immutable => I\}

Allows members to be written like this:
I.List

Importing Members of An Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be write like this:

> gcd

Implicit Imports

The following imports are implicitly included in your program:
import java.lang._
import scala._
import Predef._

Package java.lang

- Contains all the standard Java classes
- This import allows you to write things like:

Thread
instead of:
java.lang.Thread

Package scala

- Provides access to the standard Scala classes: BigInt, BigDecimal, List, etc.

Object Predef

- Definitions of many commonly used types and methods, such as:
require, ensuring, assert

Visibility Modifier Private

For a method Arithmetic.reduce in package Rationals

Local Definitions

- As with constant definitions, we can make function definitions local to the body of a function
- The functions can be referred to only in the body of the enclosing function

Local Definitions

```
def reduce() = {
    val isPositive =
        ((numerator < 0) & (denominator < 0)) |
            ((numerator > 0) & (denominator > 0))
    def reduceFromInts(num: Int, denom: Int) = {
        require ((num >= 0) & (denom > 0))
        val gcd = Arithmetic.gcd(num, denom)
        val newNum = num/gcd
        val newDenom = denom/gcd
        if (isPositive) Rational(newNum, newDenom)
        else Rational(-newNum, newDenom)
    }
    reduceFromInts(Arithmetic.abs(numerator), Arithmetic.abs(denominator))
} ensuring (_ match {
    case Rational(n,d) => Arithmetic.gcd(n,d) == 1 & (d > 0)
})
```


Design Templates for Abstract Datatypes (Part 2)

Case Two

We Expect Many New Functions But Few New Variants

Case 2: We Expect Many New Functions But Few New Variants

- This is a case that traditional functional programming handles well
- Classic example domains: Compilers, theorem provers, numeric algorithms, machine learning
- Declare a top-level function with cases for each data variant

a.k.a., The Visitor Pattern

Again We Turn to Pattern Matching

$$
\text { val pi = } 3.14
$$

def area(shape: Shape) $=$ \{ shape match \{
case Circle(r) => pi * r * r
case Square $(x)=>x{ }^{*} x$
case Rectangle(x, y) => x * y

\}
\}

We Can Define Arbitrary Functions Without Modifying Data Definitions

def makeLikeFirst(shape0: Shape, shape1: Shape) $=$ \{
(shape0, shape1) match \{
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case _ => shape1
\}
\}

But A New Data Variant Requires Us To Modify All Functions Over the Datatype

$$
\begin{aligned}
& \text { val pi = } 3.14 \\
& \text { def area(shape: Shape) = \{ } \\
& \text { shape match \{ } \\
& \text { case Circle(r) => pi * r * r } \\
& \text { case Square }(x)=>x^{*} x \\
& \text { case Rectangle(x,y) => x * y } \\
& \text { case Triangle(b,h) => b*h/2 } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

But A New Data Variant Requires Us To Modify All Functions Over the Datatype

```
def makeLikeFirst(shape0: Shape, shape1: Shape) = {
    (shape0, shape1) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)
case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)
case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)
// plus all the cases for Triangle on the left (omitted)
case _ => shape1

\title{
Recursively Defined Datatypes
}

\section*{Recursively Defined Datatypes}
- Case classes allow us to combine multiple pieces of a data into a single object
- But sometimes we don't know how many things we wish to combine
- We can use recursion to define datatypes of unbounded size
- This case corresponds to the Composite Design Pattern

\title{
Backus-Naur Form For Lists of Ints
}

\author{
List ::= Empty \\ | Cons(Int,List)
}

\title{
Examples of Lists
}

\author{
Empty \\ Cons(3, Empty) \\ Cons(3, Cons(1, Empty)) \\ Cons(3, Cons(1, Cons(4, Empty)))
}

\section*{Defining Lists With Scala Case Classes}
abstract class List case object Empty extends List case class Cons(head: Int, tail: List) extends List

\section*{Where Do We Put Functions Over Lists?}
- We do not expect to define new subtypes of lists
- We do expect to define many new functions over lists
- Similar to our Case Two Design Template for Abstract Datatypes
- Thus, we will start with our pattern matching template

\section*{An Example Function for Lists}
def containsZero(xs: List): Boolean = \{
xs match \{
case Empty => false
case Cons(n, ys) => \{
if ( \(n==0\) ) true
else containsZero(ys)
\}
\}
\}

\section*{An Example Function for Lists}
def containsZero(xs: List): Boolean = \{ xs match \{
case Empty => false case Cons(n, ys) => ( \(n==0\) ) || containsZero(ys) \}
\}

\section*{Generalizing to Our First Template Function for Lists}
def ourFunction(xs: List): Boolean = \{
xs match \{
case Empty => ...
case Cons(n, ys) => ... n ... ourFunction(ys) ...
\}
\}

\section*{Generalizing to Our First Template Function for Lists}
def ourFunction(xs: List): Boolean = \{
xs match \{
case Empty \(\Rightarrow>. .\).
case Cons(n, ys) \(\Rightarrow\)... n ... ourFunction(ys) ...
\}
\}

\section*{Generalizing to Our First Template Function for Lists}
def ourFunction(xs: List): Boolean = \{ xs match \{
case Empty => ...
case Cons(n, ys) \(\Rightarrow>\)... n ... ourFunction(ys) ...
\}


We must determine how to combine these values

\section*{Generalizing to Our First Template Function for Lists}
def ourFunction(xs: List): Boolean = \{
xs match \{
case Empty => ...
case Cons(n, ys) => ... n ... ourFunction(ys) ...
\}
\} This template is an example of natural recursion or structural recursion: We recursively decompose and then recombine a computation according to the natural structure of the data.

\section*{Filling in the Template}
def containsZero(xs: List): Boolean = \{
xs match \{
case Empty => false
case Cons(n, ys) \({ }^{\prime \prime}\) => ( \(n==0\) ) || containsZero(ys)
\}
\}
Here the base case is easy:
An empty list does not contain zero (or anything else)

\section*{Filling in the Template}
def containsZero(xs: List): Boolean = \{
xs match \{
case Empty => false case Cons(n, ys) => (n == 0) || containsZero(ys)
\}


We break into cases based on the pieces from match: Either our first element \(n\) is zero or the answer lies with the rest of the list

\title{
Another Example: How Many Elements?
}
def length(xs: List): Int = \{
xs match \{
case Empty => 0
case \(\operatorname{Cons(n,~ys)~=>~} 1\) + length(ys)
\}
\}

\title{
Another Example: \\ \\ The Sum of the Elements
} \\ \\ The Sum of the Elements
}
```

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)
}
}

```

\section*{Another Example: \\ The Product of the Elements}
```

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)
}
}

```

\section*{Converting Hours to Seconds}

Problem Statement: Given a list of times measured in hours, we want to construct a list of corresponding times measured in seconds

\section*{Converting Hours to Seconds}
```

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))
}
}

```
def seconds(hours: Int) \(=3600\) * hours

\section*{Generalizing to a Template}
def ourFunction(xs: List): List \(=\{\)
xs match \{
case Empty => ...
case Cons(n, ys) => Cons(...n... ,


Really, this is the same template as before, but now Cons is our combining operation

\section*{The Natural Numbers}

Nat : := 0
| Next(Nat)

\section*{The Natural Numbers}

Nat : := 0
I Next(Nat)

Here we are between Cases One and Two for Abstract Datatypes:
- No new variants expected
- Many new functions expected
- But some basic functions are intrinsic to the type

\title{
Defining The Natural Numbers in Scala
}
abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat

\title{
Defining The Natural Numbers in Scala
}
abstract class Nat \{ def +(n: Nat): Nat def *(n: Nat): Nat \}

\section*{Defining The Natural Numbers in Scala}
case object Zero extends Nat \{ def \(+(n\) : Nat \()=n\) def \(*(n\) : Nat \()=\) Zero \}
case class Next(n: Nat) extends Nat \{ def \(+(m: N a t)=\operatorname{Next}(n+m)\)
def \(*(m: N a t)=m+(n * m)\)
\}

\section*{Defining The Natural Numbers in Scala}
case object Zero extends Nat \{ def \(+(n:\) Nat \()=n\), def \(*(\mathrm{n}:\) Nat \()=\) Zero \(\longleftarrow\) Again we have natural \} recursion: base case, recursion, combination
case class Next(n: Nat) 凤xtends Nat \{ def \(+(m:\) Nat \()=\operatorname{Next}(n+m)\)
def \(*(m: N a t)=m+\left(n^{*} m\right)\)
\}

\section*{Example Reduction \((3+2)\)}
\(\operatorname{Next}(\operatorname{Next}(N e x t(Z e r o))+\operatorname{Next(Next(Zero))~} \mapsto\) \(\operatorname{Next}(\operatorname{Next}(\operatorname{Next}(Z e r o))+\operatorname{Next}(\operatorname{Next}(Z e r o))) \mapsto\) Next (Next(Next(Zero) + Next(Next(Zero)))) \(\mapsto\) Next(Next(Next(Zero + Next(Next(Zero))))) \(\mapsto\) Next(Next(Next(Next(Next(Zero)))))

\section*{Factorial}
def factorial(n: Nat): Nat = \{ n match \{
case Zero => Next(Zero)
case \(\operatorname{Next(m)~=>~n~*~factorial(m)~}\)

\section*{\} \\ \}}

\section*{Transferring The Pattern To Ints}
def factorial(n: Int): Int \(=\{\) require ( \(n>=0\) )
if ( \(n==0\) ) 1
else \(n\) * factorial(n - 1)
\} ensuring ( \(n>0\) )

\title{
Combining Via Auxiliary Functions
}

\section*{Combining Via Auxiliary Functions}
- As our examples with natural numbers shows, it is often necessary to define the combining operation of a natural recursion as an auxiliary function
- We can apply this insight to lists and use our template to cover yet more cases

\section*{Sorting Lists}
def sort(xs: List): List = \{
    xs match \{
            case Empty => Empty
                case Cons(n, ys) => insert(n, sort(ys))
\}

We need to explain how to insert into a sorted list

Insertion
```

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))
}
}
}

```

\section*{Insertion}
```

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
if (n <= m) Cons(n, xs)
else Cons(m, insert(n, ys))
}
}
}
This parameter is not traversed, but is used for combination and comparison Other functions follow this pattern.

```

\section*{Appending Two Lists}
abstract class List \{
/**
* Returns a new list with the elements of * this list appended to the given list.
*/
def ++(ys: List): List
\}

\section*{Appending Two Lists}
> case object Empty extends List \{ def ++(ys: List) = ys \}

\section*{Appending Two Lists}
case class Cons(first: Int, rest: List) extends List \{ def ++(ys: List) = Cons(first, rest ++ ys) \}

\section*{Family Trees}

TreeNode : := Empty
| Child(TreeNode,
TreeNode,
Int,
String)

\section*{Family Trees}

\author{
abstract class TreeNode
}
case object EmptyNode extends TreeNode
case class Child(mother: TreeNode, father: TreeNode, yearOfBirth: Int, eyeColor: String)
extends TreeNode


\section*{Family Trees}
def hasBlueEyedAncestor(t: TreeNode): Boolean \(=\{\)
t match \{
case EmptyNode => false
case Child(m,f,b,e) => ((e == "Blue") ||
hasBlueEyedAncestor(m) II hasBlueEyedAncestor(f))

\section*{\}}
\}

\section*{Binary Search Trees}

\section*{Binary Search Trees}
- We will define trees containing only Ints
- To help us find elements quickly, we will abide by the following invariant:
- At a given node containing value \(n\) :
- All values in the left subtree are less than \(n\)
- All values in the right subtree are greater than \(n\)


\section*{Binary Search Trees}
abstract class BinarySearchTree \{ def contains(n: Int): Boolean def insert(n: Int): BinarySearchTree \}

\section*{Binary Search Trees}
case object EmptyTree extends BinarySearchTree \{
def contains(n: Int) = false def insert(n: Int) = ConsTree(n, EmptyTree, EmptyTree)

\section*{Binary Search Trees}
```

case class ConsTree(m: Int,
left: BinarySearchTree,
right: BinarySearchTree)
extends BinarySearchTree {
def contains(n: Int): Boolean = {
if (n < m) left.contains(n)
else if (n > m) right.contains(n)
else true // n == m
}
def insert(n: Int) = {
if (n < m) ConsTree(m, left.insert(n), right)
else if (n > m) ConsTree(m, left, right.insert(n))
else this // n == m
}
}

```

```

