Comp 311
~unctional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Family Irees

TreeNode ::= Empty
| Child(TreeNode,
TreeNode,
Int,
String)

Family Irees

abstract class TreeNode

case object EmptyNode extends TreeNode

case class Child(mother: TreeNode,
father: TreeNode,
yearOfBirth: Int,

eyeColor: String)
extends TreeNode

yearOfBirth: 2010
eyeColor: “blue”

yearOfBirth: 1989
eyeColor: “brown”

N

yearOfBirth: 1990
eyeColor: “blue”

yvearOfBirth: 1967
eyeColor: “brown”

yearOfBirth: 1970
eyeColor: “blue”

yearOfBirth: 1965
eyeColor: “blue”

<\

Empty

Empty

VA

Empty Empty

yearOfBirth: 1969
eyeColor: “blue”

Empty

N

Empty

Empty

\

Empty

Family Irees

def hasBluekyedAncestor(t: TreeNode): Boolean = {
t match {
case EmptyNode => false
case Child(m,f,b,e) => ((e == "Blue") ||
hasBluekEyedAncestor(m) ||
hasBlueEyedAncestor(f))

Binary Search Trees

Binary Search Trees

* We define trees containing only Ints

* Jo help us find elements quickly, we abide by the
following invariant:

* At a given node containing value n:
* All values in the left subtree are less than n

* All values in the right subtree are greater than n

121

53

/

Empty

\

Empty

/\

26 Empty

74

Empty

183

165

216

\

Empty

AT

Empty

Empty

Binary Search Trees

abstract class BinarySearchTree {
def contains(n: Int): Boolean
def insert(n: Int): BinarySearchTree

¥

Binary Search Trees

case object EmptyTree extends BinarySearchTree {
def contains(n: Int) = false
def insert(n: Int) = ConsTree(n, EmptyTree, EmptyTree)

¥

Binary Search Trees

case class ConsTree(m: Int,
left: BinarySearchTree,
right: BinarySearchTree)
extends BinarySearchTree {

def contains(n: Int): Boolean = {
1f (n < m) left.contains(n)
else 1f (n > m) right.contains(n)
else true // n == m
¥
def insert(n: Int) = {
1f (n < m) ConsTree(m, left.insert(n), right)
else 1f (n > m) ConsTree(m, left, right.insert(n))
else this // n = m

¥
¥

What it we call

1nsert with 1437

/2

EMPty Empty

Empty

/N

Empty

121

183

165

216

\

Empty

AT

Empty

Empty

What if we call
1nsert with 1437

Empty

121

/)

EMPty Empty

SN 7N e

Empty Empty Empty EMpty

121

Empty

/¥
\

Empty

Traversing Multiple
Recursive Datatypes

laking the First Few
Elements

def take(n: Nat, xs: List): List = {
// reqguire n <= size(xs)
(n,xs) match {
case (Zero, xs) => Empty
case (Next(m), Cons(y, ys)) => Cons(y, take(m, ys))
}
}

laking the First Few
Elements

def take(n: Int, xs: List): List = {
require ((n >= 0) && (n <= size(xs)))
(n,xs) match {
case (@, xs) => Empty
case (n, Cons(y, ys)) => Cons(y, take(n-1, ys))
}
}

Dropping the First Few
Elements

def drop(n: Int, xs: List): List = {
require ((n >= 0) && (n <= si1ze(xs)))
(n, xs) match {
case (0, xs) => Xxs
case (n, Cons(y, ys)) => drop(n-1, ys)
}
}

Functional Update of a List

def update(xs: List, 1: Nat, y: Int): List = {
require (xs != Empty) // & & 1 < size(xs)

(xs, 1) match {
case (Cons(z, zs), Zero) => Cons(y, zs)
case (Cons(z, zs), Next(j)) => Cons(z, update(zs,j,y))

¥
¥

Functional Update of a List

def update(xs: List, 1: Int, y: Int): List = {
require ((1 >= 0) && (1 < si1ze(xs)))
assert (xs !'= Empty)

(xs, 1) match {
case (Cons(z, zs), @) => Cons(y, zs)
case (Cons(z, zs), _) => Cons(z, update(zs,i-1,y))
¥
¥

Design Abstraction

Our Function Templates
Reveal Common Structure

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)
¥
¥

def containsOne(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) = (n == 1) || containsOne(ys)
¥
¥

Our Function Templates
Reveal Common Structure

def contains(m: Int, xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == m) || contains(m, ys)
}
¥

But Sometimes the Part We
Want to Abstract Is a Function

def below(m: Int, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1f (n < m) Cons(n, below(m, ys))
else below(m, ys)
¥
¥
¥

But Sometimes the Part We
Want to Abstract Is a Function

def above(m: Int, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1f (n > m) Cons(n, above(m, ys))
else above(m, ys)
¥
¥
¥

laking Functions As
Parameters

def filter(f: (Int)=>Boolean, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1t (f(n)) Cons(n, filter(f, ys))
else filter(f, ys)
}
}
¥

Passing runctions as
Arguments

val xs = Cons(1l,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) »*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), Xxs) ~*
Empty

filter(((n: Int) => (n < 3)), xs) ~*
Cons(1,Cons(2,Empty))

Passing runctions as
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)y), xs) »*
Cons(1,Cons(2,Cons(3,Cons(4, s(5,Cons(6,Empty))))))

filter(((n: Int) == (n < 0)), Xs) =
Empty

filter(((n: Int) => (n < 3)), xs) »*

Cons(1,Cons(2,Empty)) *““‘\\~\\\\\\\\\\\\
These are

function literals

First-Class Functions

* Function literals are expressions with static arrow
types that reduce to function values

* The value type of a function value is also an arrow
type

e Function values are first-class values:

* [They are allowed to be passed as arguments

* [hey are allowed to be returned as results

Simplitying Function Literals

 Parameter types on function literals are allowed to
be elided whenever the types are clear from
context

filter(((n: Int) == (n > 0)), xs)
can be written as

filter(C(n) => (n > @)), Xxs)

Simplitying Function Literals

* Parentheses around a single parameter is allowed
to be omitted

filter(((n) == (n > 0)), xs)
can be written as

filter(n => (n > @), xs)

Simplitying Function Literals

 When a single parameter is used only once in the body of a
function literal:

 We can drop the parameter list

 We simply write the body with an _ at the place where the
parameter Is used

For example,
((x: Int) == (x < 0))
becomes

< 0

Passing runction Literals As
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(_ < 3, xs) »* Cons(1,Cons(2,Empty))

Guidelines On Using
Function Literals

e Function literals are well-suited to situations In
which:

* The function is only used once
e The function Is not recursive

* [he function does not constitute a key concept in
the problem domain

Comprehensions

{22 | x € xs}

Mapping a Computation
Over a List

def double(xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(2 * y, double(ys))
3
3

Mapping a Computation
Over a List

def negate(xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => (-y, negate(ys))
3
3

Negation as a
Comprehension

{—x | x € zs}

Generalizing a Mapping
Computation

def map(f: Int => Int, xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(f(y), map(f,ys))
¥
}

Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) »*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ~*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(‘—, XS) - ¥
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => 2 * X, Xs) »*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

Recall Our Sum Function
Over Lists

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(y,ys) => y + sum(ys)

¥
¥

In Mathematics, We Might
Write this as a Summation

> @

rexs

And Our Product Function
Over Lists

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(y,ys) => y * product(ys)

¥
¥

In Mathematics, We Might
Write this as a Product

] =

rexs

We Abstract to a Reduction
Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int = {
xs match {
case Empty => base
case Cons(y,ys) => f(y, reduce(base, f, ys))

¥
¥

Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))
reduce(0, (X,y) => X + Yy, Xs) »* 21

reduce(l, (x,y) => x * y, xs) »* 720

Min and Max

def max(xs: List) = {
reduce(Int.MinValue, (x,y) => 1f (X > y) X else y, Xs)
}

def min(xs: List) = {
reduce(Int.MaxValue, (x,y) => 1f (X < y) x else y, xs)
ks

Simplitying Function Literals

 \When each parameter is used only once in the body of a
function literal, and in the order in which they are passed:

 We can drop the parameter list

 We simply write the body with an _ at the place where each
parameter Is used

For example,
((x: Int, y: Int) == (X + vy))
becomes

+

Example Reductions

val xs = Cons(1l,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(@, _+_, Xxs) »* 21

reduce(l, _*_ —* 720

N

Note the multiple parameters

Combinations of Maps anao
Reductions

Combinations of Maps anao
Reductions

reduce(@, _+_, map(x => x*x + 1, xs))

Summation

def summation(xs: List, f: Int => Int) =
reduce(@, _+_, map(f, xs))

Summation

def square(x:Int) = x * x

summation(xs, square(_)+1)

More Syntactic Sugar

e Functions defined with def can be passed as

arguments whenever an expression of a
compatible function type is expected

* \What constitutes a compatible function type”?

Partially Applied Functions

* |f we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, Xs)

Partially Applied Functions

* |f we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, Xs)
which is equivalent to

map(_ + 1, xs)

Partially Applied Functions

 Eta Expansion: \Wrapping a function in function
iteral that takes all of the arguments of f and
immediately calls f with those arguments

(x:Int) => square(x)
IS equivalent to

square

Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(X => -X, XS)

Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(_—, XS)

Returning Functions
as Values

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) = x + vy
addX

¥

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) /X + vy
addX

¥

The explicit return type Is needed because
Scala type inference assumes an unapplied
function is an error

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = x + vy
addX _
} \
Alternatively, we can eta-expand addX to assure
the type checker that we really do intend to return a function

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = X + y
addX _
I3 \
An underscore outside of parentheses in a function

application denotes the entire tuple of arguments
passed to the function

We Can Define Functions That
Return Other Functions as Values

def adder(x: Int)

X + (_: Int)

We can instead define add by partially eta-expanding
the + operator. But then we need to annotate the
second operand with a type.

Imports

Importing a Member of a
Package

import scala.collection.immutable.List

Importing Multiple Members
of a Package

import scala.collection.immutable.{List, Vector}

Importing and Renaming
Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

Importing All Members of a
Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

Combining Notations

import scala.collection.immutable.{_}
same meaning as:

import scala.collection.immutable._

Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames
List to SList

Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package except for
List

Importing a Package

1mport scala.collection.immutable
Now sub-packages can be denoted by shorter names:

immutable.List

Importing and Renaming
Packages

1mport scala.collection.{immutable => I}

Allows members to be written like this;

I.L1ist

Importing Members of An
Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be
write like this:

gcd

Implicit Imports

The following imports are implicitly included
IN your program:

import java.lang._
1mport scala._
1mport Predef._

Package Java.lang

e Contains all the standard Java classes
* This import allows you to write things like:

Thread

instead of:

java. lang.Thread

Package scala

* Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

Object Predet

e Definitions of many commonly used types and
methods, such as:

require, ensuring, assert

Visibility Moditier Private

For a method Arithmetic.reduce in package Rationals

Modifier Explanation

no modifier public access

private private to class Arithmetic

| ocal Definitions

 As with constant definitions, we can make function
definitions local to the body of a function

* The functions can be referred to only in the body of
the enclosing function

| ocal Definitions

def reduce() = {
val 1sPositive =
((numerator < @) & (denominator < 0)) |

((numerator > 0) & (denominator > 0))

def reduceFromIntsCnum: Int, denom: Int) = {
require ((num >= 0) & (denom > 0))
val gcd = Arithmetic.gcd(num, denom)
val newNum = num/gcd
val newDenom = denom/gcd

1f (1sPositive) Rational(newNum, newDenom)
else Rational(-newNum, newDenom)

h

reduceFromInts(Arithmetic.abs(Cnumerator), Arithmetic.abs(denominator))

} ensuring (_ match {
case Rational(n,d) => Arithmetic.gcd(n,d) == 1 & (d > 0)

1)

Announcements

* Homework 2 Available from Piazza (Due October 1)

* Two Sigma Info Session at Huff House, 4pm Today

