Comp 311 Functional Programming

Eric Allen, Two Sigma Investments Robert "Corky" Cartwright, Rice University Sagnak Tasirlar, Two Sigma Investments

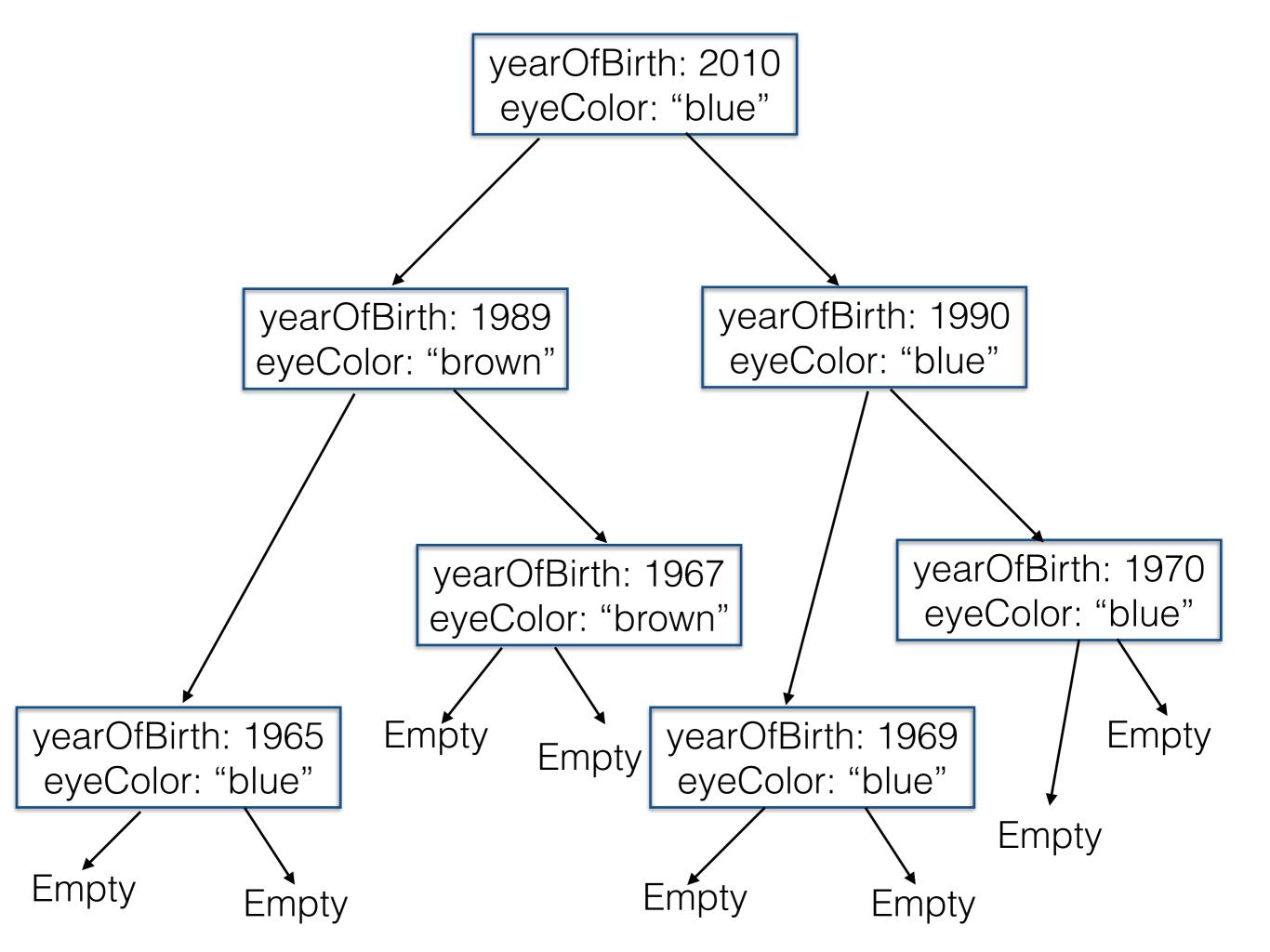
Family Trees

Family Trees

abstract class TreeNode

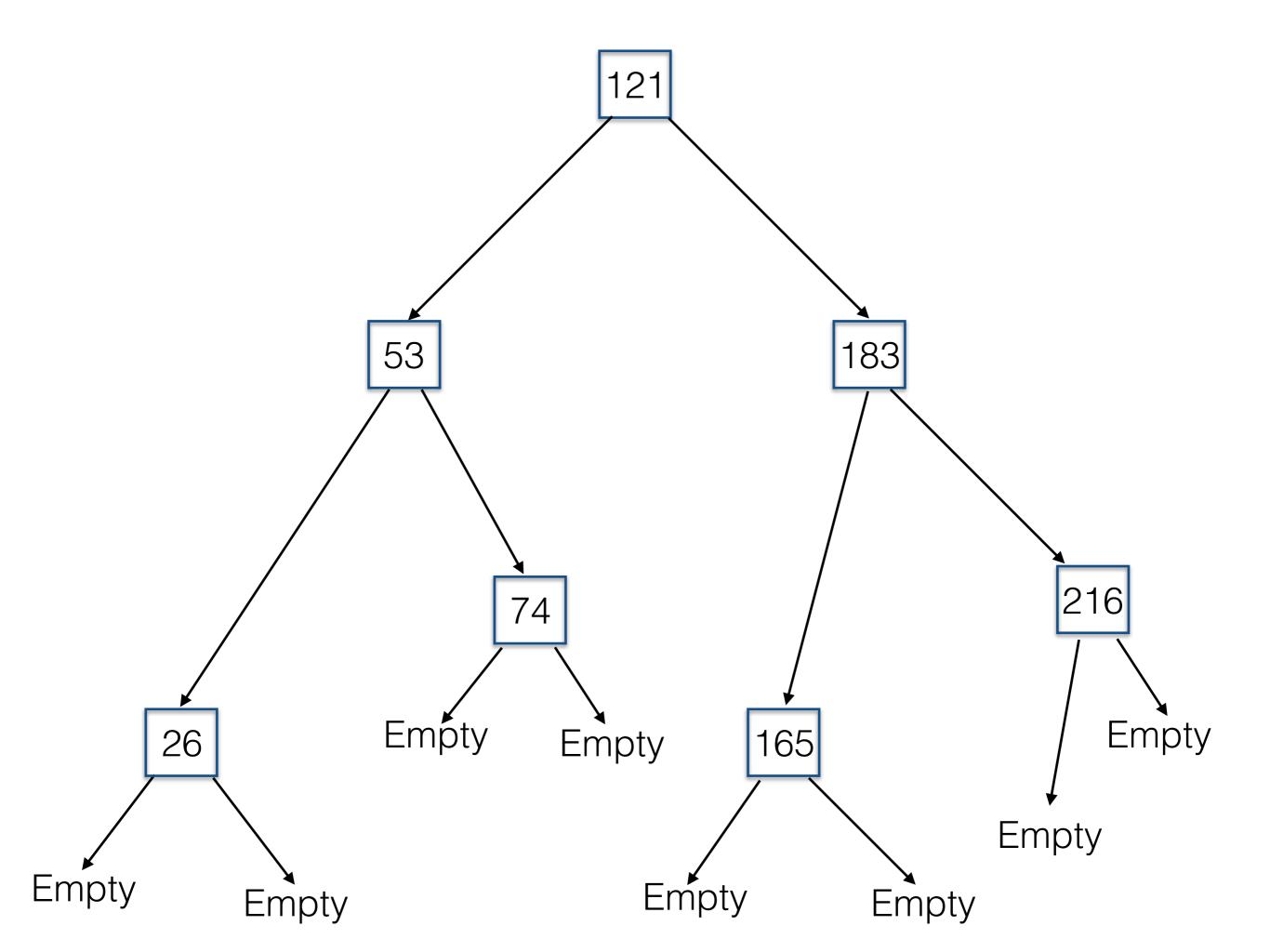
case object EmptyNode extends TreeNode

extends TreeNode



Family Trees

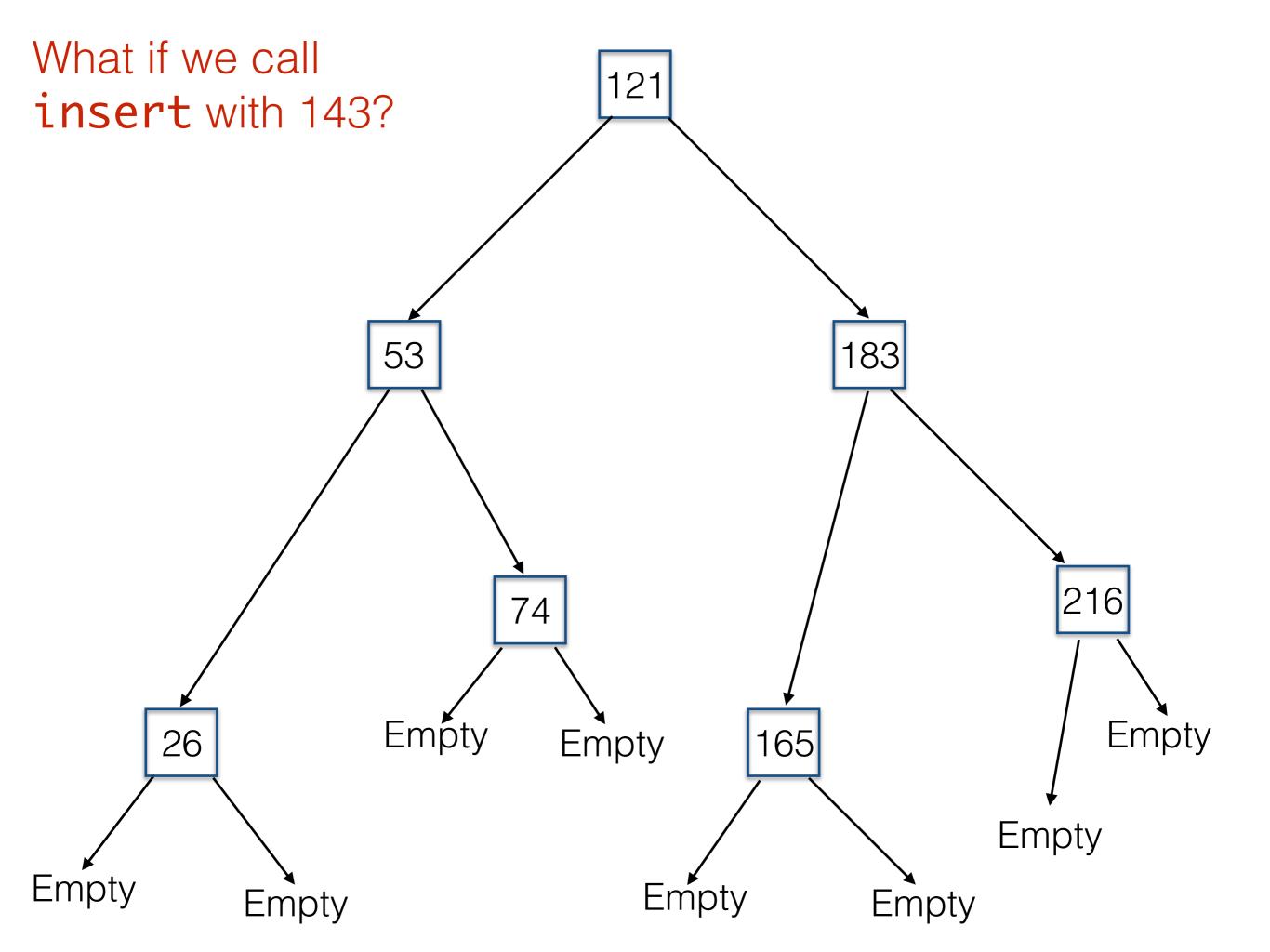
- We define trees containing only Ints
- To help us find elements quickly, we abide by the following invariant:
 - At a given node containing value *n*:
 - All values in the left subtree are less than n
 - All values in the right subtree are greater than n

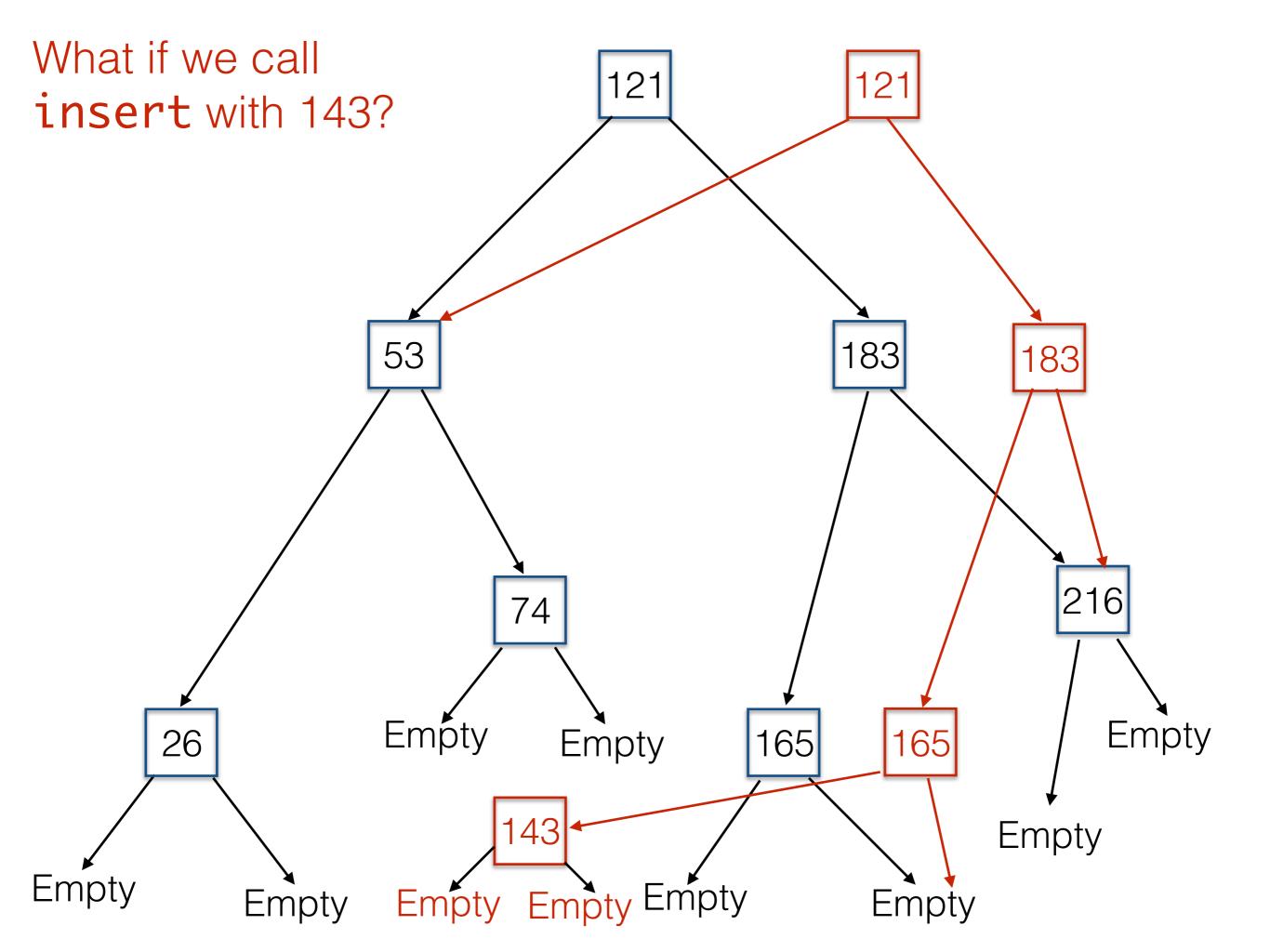


```
abstract class BinarySearchTree {
  def contains(n: Int): Boolean
  def insert(n: Int): BinarySearchTree
}
```

```
case object EmptyTree extends BinarySearchTree {
  def contains(n: Int) = false
  def insert(n: Int) = ConsTree(n, EmptyTree, EmptyTree)
}
```

```
case class ConsTree(m: Int,
                     left: BinarySearchTree,
                     right: BinarySearchTree)
extends BinarySearchTree {
  def contains(n: Int): Boolean = {
    if (n < m) left.contains(n)</pre>
    else if (n > m) right.contains(n)
    else true // n == m
  def insert(n: Int) = {
    if (n < m) ConsTree(m, left.insert(n), right)</pre>
    else if (n > m) ConsTree(m, left, right.insert(n))
    else this // n == m
```





Traversing Multiple Recursive Datatypes

Taking the First Few Elements

```
def take(n: Nat, xs: List): List = {
   // require n <= size(xs)
   (n,xs) match {
    case (Zero, xs) => Empty
    case (Next(m), Cons(y, ys)) => Cons(y, take(m, ys))
   }
}
```

Taking the First Few Elements

```
def take(n: Int, xs: List): List = {
  require ((n >= 0) && (n <= size(xs)))
  (n,xs) match {
    case (0, xs) => Empty
    case (n, Cons(y, ys)) => Cons(y, take(n-1, ys))
  }
}
```

Dropping the First Few Elements

```
def drop(n: Int, xs: List): List = {
  require ((n >= 0) && (n <= size(xs)))
  (n, xs) match {
    case (0, xs) => xs
    case (n, Cons(y, ys)) => drop(n-1, ys)
  }
}
```

Functional Update of a List

```
def update(xs: List, i: Nat, y: Int): List = {
    require (xs != Empty) // && i < size(xs)

    (xs, i) match {
        case (Cons(z, zs), Zero) => Cons(y, zs)
        case (Cons(z, zs), Next(j)) => Cons(z, update(zs,j,y))
    }
}
```

Functional Update of a List

```
def update(xs: List, i: Int, y: Int): List = {
    require ((i >= 0) && (i < size(xs)))
    assert (xs != Empty)

    (xs, i) match {
        case (Cons(z, zs), 0) => Cons(y, zs)
        case (Cons(z, zs), _) => Cons(z, update(zs,i-1,y))
    }
}
```

Design Abstraction

Our Function Templates Reveal Common Structure

```
def containsZero(xs: List): Boolean = {
 xs match {
    case Empty => false
    case Cons(n, ys) => (n == 0) || containsZero(ys)
def containsOne(xs: List): Boolean = {
 xs match {
    case Empty => false
    case Cons(n, ys) => (n == 1) || contains0ne(ys)
```

Our Function Templates Reveal Common Structure

```
def contains(m: Int, xs: List): Boolean = {
    xs match {
      case Empty => false
      case Cons(n, ys) => (n == m) || contains(m, ys)
    }
}
```

But Sometimes the Part We Want to Abstract Is a Function

```
def below(m: Int, xs: List): List = {
  xs match {
    case Empty => Empty
    case Cons(n, ys) \Rightarrow {
      if (n < m) Cons(n, below(m, ys))</pre>
      else below(m, ys)
```

But Sometimes the Part We Want to Abstract Is a Function

```
def above(m: Int, xs: List): List = {
 xs match {
    case Empty => Empty
    case Cons(n, ys) => {
      if (n > m) Cons(n, above(m, ys))
      else above(m, ys)
```

Taking Functions As Parameters

```
def filter(f: (Int)=>Boolean, xs: List): List = {
    xs match {
        case Empty => Empty
        case Cons(n, ys) => {
            if (f(n)) Cons(n, filter(f, ys))
            else filter(f, ys)
        }
    }
}
```

Passing Functions as Arguments

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))
filter(((n: Int) => (n > 0)), xs) →*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))
filter(((n: Int) => (n < 0)), xs) →*
Empty
filter(((n: Int) => (n < 3)), xs) →*
Cons(1,Cons(2,Empty))</pre>
```

Passing Functions as Arguments

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))
filter(((n: Int) => (n > 0)), xs) \rightarrow*
Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, Empty))))))
filter(((n: Int) => (n < \emptyset)), xs) \rightarrow*
Empty
filter(((n: Int) \Rightarrow (n < 3)), xs) \Rightarrow*
Cons(1,Cons(2,Empty))
                                                          These are
                                                      function literals
```

First-Class Functions

- Function literals are expressions with static arrow types that reduce to function values
- The value type of a function value is also an arrow type
- Function values are first-class values:
 - They are allowed to be passed as arguments
 - They are allowed to be returned as results

Simplifying Function Literals

 Parameter types on function literals are allowed to be elided whenever the types are clear from context

```
filter(((n: Int) \Rightarrow (n \Rightarrow 0)), xs)
```

can be written as

$$filter(((n) => (n > 0)), xs)$$

Simplifying Function Literals

 Parentheses around a single parameter is allowed to be omitted

$$filter(((n) => (n > 0)), xs)$$

can be written as

$$filter(n \Rightarrow (n > 0), xs)$$

Simplifying Function Literals

- When a single parameter is used only once in the body of a function literal:
 - We can drop the parameter list
 - We simply write the body with an _ at the place where the parameter is used

For example,

$$((x: Int) => (x < 0))$$

becomes

Passing Function Literals As Arguments

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))
filter(\_ < 3, xs) \rightarrow^* Cons(1,Cons(2,Empty))
```

Guidelines On Using Function Literals

- Function literals are well-suited to situations in which:
 - The function is only used once
 - The function is not recursive
 - The function does not constitute a key concept in the problem domain

Comprehensions

$$\{2x \mid x \in xs\}$$

Mapping a Computation Over a List

```
def double(xs: List) = {
    xs match {
      case Empty => Empty
      case Cons(y,ys) => Cons(2 * y, double(ys))
    }
}
```

Mapping a Computation Over a List

```
def negate(xs: List) = {
    xs match {
      case Empty => Empty
      case Cons(y,ys) => (-y, negate(ys))
    }
}
```

Negation as a Comprehension

$$\{-x \mid x \in xs\}$$

Generalizing a Mapping Computation

```
def map(f: Int => Int, xs: List) = {
    xs match {
      case Empty => Empty
      case Cons(y,ys) => Cons(f(y), map(f,ys))
    }
}
```

Mapping a Computation Over a List

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))

negate(xs) \mapsto*

Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty)))))

double(xs) \mapsto*

Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty)))))
```

Mapping a Computation Over a List

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))
map(-_, xs) →*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty)))))
map(x => 2 * x, xs) →*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))
```

Recall Our Sum Function Over Lists

```
def sum(xs: List): Int = {
    xs match {
      case Empty => 0
      case Cons(y,ys) => y + sum(ys)
    }
}
```

In Mathematics, We Might Write this as a Summation

$$\sum_{x \in xs} x$$

And Our Product Function Over Lists

```
def product(xs: List): Int = {
    xs match {
      case Empty => 1
      case Cons(y,ys) => y * product(ys)
    }
}
```

In Mathematics, We Might Write this as a Product

$$\prod_{x \in xs} x$$

We Abstract to a Reduction Function Over Lists

```
def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int = {
    xs match {
      case Empty => base
      case Cons(y,ys) => f(y, reduce(base, f, ys))
    }
}
```

Example Reductions

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty)))))

reduce(0, (x,y) => x + y, xs) \rightarrow* 21

reduce(1, (x,y) => x * y, xs) \rightarrow* 720
```

Min and Max

```
def max(xs: List) = {
  reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)
}

def min(xs: List) = {
  reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)
}</pre>
```

Simplifying Function Literals

- When *each* parameter is used only once in the body of a function literal, and in the order in which they are passed:
 - We can drop the parameter list
 - We simply write the body with an _ at the place where each parameter is used

For example,

$$((x: Int, y: Int) => (x + y))$$

becomes

Example Reductions

```
val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))
```

reduce(0,
$$_+$$
, xs) \rightarrow * 21

Note the multiple parameters

Combinations of Maps and Reductions

$$\sum_{x \in xs} x^2 + 1$$

Combinations of Maps and Reductions

```
reduce(0, _+_, map(x => x*x + 1, xs))
```

Summation

```
def summation(xs: List, f: Int => Int) =
  reduce(0, _+_, map(f, xs))
```

Summation

```
def square(x:Int) = x * x
summation(xs, square(_)+1)
```

More Syntactic Sugar

- Functions defined with def can be passed as arguments whenever an expression of a compatible function type is expected
- What constitutes a compatible function type?

Partially Applied Functions

 If we want to pass a function as an argument, but supply some of the arguments to the function ourselves, we can wrap an application to the function in a function literal:

$$map(x \Rightarrow x + 1, xs)$$

Partially Applied Functions

 If we want to pass a function as an argument, but supply some of the arguments to the function ourselves, we can wrap an application to the function in a function literal:

$$map(x \Rightarrow x + 1, xs)$$

which is equivalent to

$$map(_ + 1, xs)$$

Partially Applied Functions

• **Eta Expansion:** Wrapping a function in function literal that takes all of the arguments of f and immediately calls f with those arguments

(x:Int) => square(x)

is equivalent to

square

Mapping a Computation Over a List

We can use eta expansion to pass operators as arguments:

$$map(x => -x, xs)$$

Mapping a Computation Over a List

We can use eta expansion to pass operators as arguments:

 $map(-_, xs)$

Returning Functions as Values

```
def adder(x: Int): Int => Int = {
  def addX(y: Int) = x + y
  addX
}
```

```
def adder(x: Int): Int => Int = {
  def addX(y: Int) = x + y
  addX
}
```

The explicit return type is needed because Scala type inference assumes an unapplied function is an error

```
def adder(x: Int) = {
  def addX(y: Int) = x + y
  addX _
}
```

Alternatively, we can eta-expand addX to assure the type checker that we really do intend to return a function

```
def adder(x: Int) = {
  def addX(y: Int) = x + y
  addX _
}
```

An underscore outside of parentheses in a function application denotes the entire tuple of arguments passed to the function

```
def adder(x: Int) = x + (_: Int)
```

We can instead define add by *partially* eta-expanding the + operator. But then we need to annotate the second operand with a type.

Imports

Importing a Member of a Package

import scala.collection.immutable.List

Importing Multiple Members of a Package

import scala.collection.immutable.{List, Vector}

Importing and Renaming Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

Importing All Members of a Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

Combining Notations

import scala.collection.immutable.{_}

same meaning as:

import scala.collection.immutable._

Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames List to SList

Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package except for List

Importing a Package

import scala.collection.immutable

Now sub-packages can be denoted by shorter names:

immutable.List

Importing and Renaming Packages

import scala.collection.{immutable => I}

Allows members to be written like this:

I.List

Importing Members of An Object

import Arithmetic._

Allows members such as **Arithmetic.gcd** to be write like this:

gcd

Implicit Imports

The following imports are implicitly included in your program:

```
import java.lang._
import scala._
import Predef._
```

Package java.lang

- Contains all the standard Java classes
- This import allows you to write things like:

Thread

instead of:

java.lang.Thread

Package scala

Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

Object Predef

 Definitions of many commonly used types and methods, such as:

require, ensuring, assert

Visibility Modifier Private

For a method Arithmetic.reduce in package Rationals

Modifier Explanation

no modifier

public access

private

private to class Arithmetic

Local Definitions

- As with constant definitions, we can make function definitions local to the body of a function
- The functions can be referred to only in the body of the enclosing function

Local Definitions

```
def reduce() = {
  val isPositive =
    ((numerator < 0) & (denominator < 0)) |
      ((numerator > 0) & (denominator > 0))
  def reduceFromInts(num: Int, denom: Int) = {
    require ((num >= 0) & (denom > 0))
    val gcd = Arithmetic.gcd(num, denom)
    val newNum = num/gcd
    val newDenom = denom/gcd
    if (isPositive) Rational(newNum, newDenom)
    else Rational(-newNum, newDenom)
  reduceFromInts(Arithmetic.abs(numerator), Arithmetic.abs(denominator))
} ensuring (_ match {
  case Rational(n,d) => Arithmetic.gcd(n,d) == 1 \& (d > 0)
})
```

Announcements

- Homework 2 Available from Piazza (Due October 1)
- Two Sigma Info Session at Huff House, 4pm Today