Passing Function Literals As Arguments

```scala
val xs = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, Empty))))))

filter(_ < 3, xs) => Cons(1, Cons(2, Empty))
```
Guidelines On Using Function Literals

• Function literals are well-suited to situations in which:
 • The function is only used once
 • The function is not recursive
 • The function does not constitute a key concept in the problem domain
Comprehensions

\{2x \mid x \in xs\}
Mapping a Computation Over a List

```scala
def double(xs: List) = {
  xs match {
    case Empty => Empty
    case Cons(y,ys) => Cons(y * y, double(ys))
  }
}
```
def negate(xs: List) = {
 xs match {
 case Empty => Empty
 case Cons(y, ys) => (-y, negate(ys))
 }
}

Mapping a Computation
Over a List
Negation as a Comprehension

\{ \neg x \mid x \in xs \}
Generalizing a Mapping Computation

def map(f: Int => Int, xs: List) = {
 xs match {
 case Empty => Empty
 case Cons(y, ys) => Cons(f(y), map(f, ys))
 }
}
Mapping a Computation Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))
Mapping a Computation Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(_, xs) ↦ *
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => x * x, xs) ↦ *
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))
Recall Our Sum Function Over Lists

def sum(xs: List): Int = {
 xs match {
 case Empty => 0
 case Cons(y, ys) => y + sum(ys)
 }
}
In Mathematics, We Might Write this as a Summation

\[\sum_{x \in \text{xs}} x \]
And Our Product Function Over Lists

def product(xs: List): Int = {
 xs match {
 case Empty => 1
 case Cons(y, ys) => y * sum(ys)
 }
}
In Mathematics, We Might Write this as a Product

\[\prod_{x \in x_s} x \]
We Abstract to a Reduction Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int = {
 xs match {
 case Empty => base
 case Cons(y,ys) => f(y, reduce(base, f, ys))
 }
}
Example Reductions

```scala
val xs = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, Empty))))))

reduce(0, (x, y) => x + y, xs) →* 21
reduce(1, (x, y) => x * y, xs) →* 720
```
def max(xs: List) = {
 reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)
}

def min(xs: List) = {
 reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)
}
Simplifying Function Literals

• When *each* parameter is used only once in the body of a function literal, and in the order in which they are passed:

 • We can drop the parameter list

 • We simply write the body with an _ at the place where each parameter is used

 For example,

 $$((x: \text{Int}, y: \text{Int}) \Rightarrow (x + y))$$

 becomes

 _ + _
Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, _+_ , xs) ↦* 21

reduce(1, _*_ , xs) ↦* 720

Note the multiple parameters
Combinations of Maps and Reductions

\[\sum_{x \in x s} x^2 + 1 \]
Combinations of Maps and Reductions

reduce(0, _+_, map(x => x*x + 1, xs))
def summation(xs: List, f: Int => Int) =
 reduce(0, _+_ , map(f, xs))
Summation

```scala
def square(x:Int) = x * x

summation(xs, square(_)+1)
```
More Syntactic Sugar

• Functions defined with `def` can be passed as arguments whenever an expression of a compatible function type is expected.

• What constitutes a compatible function type?
Partially Applied Functions

• If we want to pass a function as an argument, but supply some of the arguments to the function ourselves, we can wrap an application to the function in a function literal:

\[
\text{map}(x \Rightarrow x + 1, \text{xs})
\]
Partially Applied Functions

- If we want to pass a function as an argument, but supply some of the arguments to the function ourselves, we can wrap an application to the function in a function literal:

 \[\text{map}(x \mapsto x + 1, \text{xs}) \]

 which is equivalent to

 \[\text{map}(_ + 1, \text{xs}) \]
Partially Applied Functions

• **Eta Expansion:** Wrapping a function in function literal that takes all of the arguments of f and immediately calls f with those arguments

\[(x: \text{Int}) \Rightarrow \text{square}(x)\]

is equivalent to

\[\text{square}\]
Mapping a Computation Over a List

We can use eta expansion to pass operators as arguments:

```scala
map(x => -x, xs)
```
Mapping a Computation Over a List

We can use eta expansion to pass operators as arguments:

\texttt{map(-_, xs)}
Returning Functions as Values
We Can Define Functions That Return Other Functions as Values

```scala
def add(x: Int): Int => Int = {
  def addX(y: Int) = x + y
  addX
}
```
We Can Define Functions That Return Other Functions as Values

```scala
def add(x: Int): Int => Int = {
  def addX(y: Int) = x + y
  addX
}
```

The explicit return type is needed because Scala type inference assumes an unapplied function is an error.
We Can Define Functions That Return Other Functions as Values

def add(x: Int) = {
 def addX(y: Int) = x + y
 addX _
}

Alternatively, we can eta-expand addX to assure the type checker that we really do intend to return a function
We Can Define Functions That Return Other Functions as Values

```scala
def add(x: Int) = {
    def addX(y: Int) = x + y
    addX _
}
```

An underscore outside of parentheses in a function application denotes the entire tuple of arguments passed to the function.
We Can Define Functions That Return Other Functions as Values

```
def add(x: Int) = x + (_: Int)
```

We can instead define `add` by *partially* eta-expanding the `+` operator. But then we need to annotate the second operand with a type.
Aside: Type Annotations

- In general, an expression annotated with a type is itself an expression:

 \[\text{expr} : \text{Type} \]

- If the static type of \text{expr} is a subtype of \text{Type}, then the type of \text{expr : Type} is \text{Type}
Partial Eta-Expansion

- We can partially eta-expand any function, but we need to annotate the argument types:

```scala
def reduce0 = reduce(0, _ : (Int, Int) => Int, _ : List)
```
Derivatives

def derivative(f: Double => Double, dx: Double) =
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx
Derivatives

```python
def f(x: Double) = x * x
def Df = derivative(f, 0.00001)

f(4) ↦ 16
Df(4) ↦ 8.000009999952033
```
def D(f: Double => Double) = {
 val dx = 0.00001
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx
}

Encapsulating dx
def D(f: Double => Double) = {
 val dx = 0.00001
 (x: Double) =>
 (f(x + dx) - f(x)) / dx
}

Our returned function “remembers” these values
Applying a Derivative

```scala
def D(f: Double => Double) = {
  val dx = 0.00001
  (x: Double) =>
    (f(x + dx) - f(x)) / dx
}
D(f)(4) ↦
D((x: Double) => x * x)(4) ↦
```
Applying a Derivative

\[
D((x: \text{Double}) \Rightarrow x \times x))(4) \mapsto \\
\{ \text{val } dx = 0.00001 \\
(x: \text{Double}) \Rightarrow \\
((x: \text{Double}) \Rightarrow x \times x)(x + dx) - \\
(x: \text{Double}) \Rightarrow x \times x)(x)) / \\
dx \} (4) \mapsto
\]
Applying a Derivative

\[
\{(x: \text{Double}) \Rightarrow \\
 ((x: \text{Double}) \Rightarrow x \times x)(x + 0.00001) - \\
 (x: \text{Double}) \Rightarrow x \times x)(x)) / \\
 0.00001\}(4) \leftarrow
\]

\[
((x: \text{Double}) \Rightarrow x \times x)(4 + 0.00001) - \\
(x: \text{Double}) \Rightarrow x \times x)(4)) / \\
0.00001 \leftarrow
\]

We must be careful to substitute only corresponding occurrences of x
Applying a Derivative

\[
((x: \text{Double}) \Rightarrow x \times x)(4 + 0.00001) - (x: \text{Double}) \Rightarrow x \times x)(4)) / 0.00001 \rightarrow \\
((x: \text{Double}) \Rightarrow x \times x)(4.00001) - (x: \text{Double}) \Rightarrow x \times x)(4)) / 0.00001 \rightarrow \\
((4.00001 \times 4.00001) - (4 \times 4)) / 0.00001 \rightarrow
\]
Applying a Derivative

\[
\frac{(4.00001 \times 4.00001) - (4 \times 4))}{0.00001} \rightarrow \\
(16.0000800000099995 - 16) / 0.00001 \rightarrow \\
8.00000999952033E-5 / 0.00001 \rightarrow \\
8.00000999952033
\]
Safe Substitution
Applying a Derivative

\[
\{(x: \text{Double}) \Rightarrow \\
(\{(x: \text{Double}) \Rightarrow x \times x\}(x + 0.00001) - \\
(\{(x: \text{Double}) \Rightarrow x \times x\}(x)) / \\
0.00001\}(4) \mapsto \\
(\{(x: \text{Double}) \Rightarrow x \times x\}(4 + 0.00001) - \\
(\{(x: \text{Double}) \Rightarrow x \times x\}(4)) / \\
0.00001
\]

In cases like this one, we can avoid accidental variable capture by selective renaming
Safe Substitution
(a.k.a. Alpha Renaming)

- We can ensure we never accidentally substitute the wrong parameters by automatically renaming constants, functions, and parameters with fresh names.
 - A fresh name must not capture a name referred to in the scope of a parameter.
 - A fresh name must not be captured by a name in an enclosing scope.
Applying a Derivative

\[
\{(x: \text{Double}) \Rightarrow \\
 ((y: \text{Double}) \Rightarrow y \cdot y)(x + 0.00001) - \\
 (z: \text{Double}) \Rightarrow z \cdot z)(x)) / \\
 0.00001\}(4) \mapsto \\
\]

\[
((y: \text{Double}) \Rightarrow y \cdot y)(4 + 0.00001) - \\
 (z: \text{Double}) \Rightarrow z \cdot z)(4)) / \\
 0.00001
\]
Function Equivalence

• Now we have seen the three forms of function equivalence stipulated by the Lambda Calculus:

• Alpha Renaming: Changing the names of a function’s parameters does not affect the meaning of the function

• Beta Reduction: To apply a function to an argument, reduce to the body of the function, substituting occurrences of the parameter with the corresponding argument

• Eta Equivalence: Two functions are equivalent iff they are \emph{extensionally equivalent}: They give the same results for all arguments
Parametric Types
Parametric Types

• We have defined two forms of lists: lists of ints and lists of shapes

• Many computations useful for one are useful for the other:
 • Map, reduce, filter, etc.

• It would be better to define lists and their operations once for all of these cases
Parametric Types

• Higher-order functions take functions as arguments and return functions as results

• Likewise, *parametric types*, a.k.a., a *generic types*, takes types as arguments and return types as results
Parametric Lists

• Every application of this parametric type to an argument yields a new type:

```scala
abstract class List[T] {
  def ++(ys: List[T]): List[T]
}
```
Parametric Lists

• Every application of this parametric type to an argument yields a new type:

 abstract class List[T <: Any] {
 def ++(ys: List[T]): List[T]
 }

• We augment the declarations of type parameters to permit an upper bound on all instantiations of a parameter

• By default, the bound is Any
Syntax of Parametric Class Definitions

```java
<modifiers> class C[T1 <: N,..,TN <: N] extends N {
    <ordinary class body>
}
```

- We denote “naked” type parameters as T1, T2, etc.
- We denote all other types with N, M, etc.
Syntax of Parametric Class Definitions

```java
<modifiers> class C[T1 <: N,..,TN <: N] extends N { 
   <ordinary class body>
}
```

- Declared type parameters T1, ..., TN are in scope throughout the entire class definition, including:
 - The bounds of type parameters
 - The `extends` clause
 - Object definitions must not be parametric
Parametric Lists

- Every application of this parametric type yields a new type:

 List[Int]
 List[String]
 List[List[Double]]
 etc.
Parametric Lists

• Every application (a.k.a., *instantiation*) of this parametric type yields a new type:

```scala
abstract class List[T] {
  def ++(ys: List[T]): List[T]
}
```

Note that our parametric type can be instantiated with type parameters, including its own!
Parametric Lists

case class Empty[S]() extends List[S] {
 def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
 def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}
Parametric Lists

```scala
case class Empty[S]() extends List[S] {
  def +(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
  def +(ys: List[T]) = Cons[T](head, tail + ys)
}
```

Our definition requires a separate type `Empty[S]` for every instantiation of `S`. Thus we must define `Empty` as a class rather than an object.
Type Environments

• To explain how to type check expressions in the context of parametric types, we must introduce the notion of *environments*.

• We define a type parameter environment to hold a collection of zero or more type parameter declarations with their bounds.

• Type environments can be extended with more declarations.
Type Checking a Class Definition

- To type check a parametric class definition:

 - Check the declarations of the class in a new type parameter environment that extends the enclosing environment with all its type parameters
Type Checking a Function Definition

• To type check a function definition in environment E:

 • Check that the types of all parameters are well-formed

 • Find the type of the body of the function, substituting occurrences of parameters with their types

 • Ensure that the type of the body is a subtype of the declared return type (in environment E)
Well-Formedness of Types

A type is well-formed in environment E iff:

- If it is a well-defined non-parametric type
- It is a type parameter T in environment E
- It is an instantiation of a defined parametric type and:
 - All of its type arguments are well-formed types in E
 - All of its type arguments respect the bounds on their corresponding type parameters
Subtyping With Environments

• It is non-sensical to compare types in separate type environments:

```scala
case class Empty[S]() extends List[S] {
  def ++(ys: List[S]) = ys
}
case class Cons[T](head: T, tail: List[T]) extends List[T] {
  def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}
```

• Is S a subtype of T?
Subtyping With Environments

- We must modify our subtyping rules to refer to an environment E:
 - S <: S in E
 - If S <: T in E and T <: U in E then S <: U in E
Subtyping With Environments

- If:
 - class C[T₁,..,TN] extends D[U₁,...UM]
 - and X₁,...,Xₙ are well-formed in E
 - then C[X₁,...Xₙ] <: D[U₁,...,UM][T₁↦X₁,...,TN↦Xₙ] in E
Subtyping With Environments

• If:
 • class C[T1,...,TN] extends D[U1,...UM]
 • and X1,...,XN are well-formed in E
 • then C[X1,...XN] <: D[U1,...,UM][T1↦X1,...,TN↦XN] in E

We use this notation to indicate safe substitution of T1 for X1, … TN for XN in D[U1,...,UM]
Covariance

• Can one instantiation of a parametric type be a subtype of another?

• Currently our rules allow this only in the reflexive case:

 List[Int] <: List[Int] in E
Covariance

• It would be useful to allow some instantiations to be subtypes of another

• For example, we would like it to be the case that:

\[
\text{List[Int]} <: \text{List[Any]}
\]
Covariance

• In general, we say that a parametric type C is covariant with respect to its type parameter S if:

$$S <: T \text{ in } E$$

implies

$$C[S] <: C[T] \text{ in } E$$

• We must be careful that such relationships do not break the soundness of our type system.
Covariance

- For a parametric type such as:

  ```scala
  abstract class List[T <: Any] {
    def ++(ys: List[T]): List[T]
  }
  ```

- And types S and T, such that $S <: T$ in some environment E:

 - What must we check about the body of class `List` to allow for `List[S] <: List[T]` in E?
Covariance

- Consider instantiations for types `String` and `Any`:

```scala
abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] {
  def ++(ys: List[String]): List[String]
}
```
Covariance

• If these were ordinary classes connected by an extends class:

 • We would need to ensure that the overriding definition of ++ in class List[String] was compatible with the overridden definition in List[Any]
abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
 def ++(ys: List[String]): List[String]
}
Covariance

```scala
abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
  def ++(ys: List[String]): List[String]
}

But if List[String] <: List[Any] in E
then this is not a valid override
```
abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
 def ++(ys: List[String]): List[String]
}

On the other hand, the return types are not problematic
Covariance

• From our example, we can glean the following rule:

 • We allow a parametric class C to be covariant with respect to a type parameter T so long as T does not appear in the types of the method parameters of C
Covariance

abstract class List[+T] {}

• We stipulate that a parametric type is covariant in a parameter T by prefixing a + at the definition of T

• (We will return to our definition of append later)
Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T]) extends List[T] {
}