
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Announcements

• Homework 2 Available from Piazza (Due October 6)

• Two Sigma Info Session at Huff House, 8pm Today

Additional Syntactic
Forms

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero or more arguments

• The arguments are placed into an Array of the
given type

 def squares(xs: Int*) =
 for (x <- xs)
 yield x*x

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero or more arguments

• The arguments are placed into an Array of the
given type

 squares(4,2,6,5,8)
squares()

 squares(4,2,6,8)
squares(3)

squares(4,3,7)

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero to many arguments

• The arguments are placed into an Array of the
given type

 def fnName(arg0, .., argN: Type*) =
 expr

Repeated Parameters
• If you have an array and you wish to pass it to a

repeated parameter, include the suffix :_*

squares(1,2,3,4,5) ↦
ArrayBuffer(1, 4, 9, 16, 25)

ArrayBuffers
• Buffers in Scala enable incremental creation of sequences

• Support destructive append, prepend, insert

• We have not talked about destructive operations yet

• Just pretend they are arrays for now

• Random access to elements

• ArrayBuffers are simply Buffers implemented using Arrays

Repeated Parameters
• If you have an array and you wish to pass it to a

repeated parameter, include the suffix :_*

val myArray = Array(1,2,3)
squares(myArray: _*)

Guidelines on Repeated
Parameters

• Use repeated parameters to provide factory methods for
collections classes

• Use repeated parameters for methods that map over an
immediately provided set of values

• Use repeated parameters for folds over an immediately
provided set of values

List(1,2,3,4,5)

squares(1,2,3,4,5)

sum(1,2,3,4,5)

Named Arguments
• With named arguments, the arguments to a

function can be passed in any order

• Each argument must be prefixed with the name of
the parameter and an equals sign:

def speed(distance: Double, time: Double) =
 distance/time

speed(time = 5.0, distance = 2.0)

Named Arguments
• If positional arguments are mixed with named

arguments, the positional arguments must come
first

def speed(distance: Double, time: Double) =
 distance/time

speed(2.0, time = 5.0)

Guidelines on Named
Arguments

• Named arguments add bulk to function applications

• Use when:

• There are multiple arguments of the same type

• It’s important which arguments correspond to which
parameters

• There is no natural order for the arguments

• The expected order of the arguments is difficult to
remember

Default Parameter Values
• Function parameters can include default values:

• The argument for a parameter with a default value can
be omitted at the call site:

case class Circle(radius: Double = 1) extends Shape {
 val pi = 3.14

 def area = { pi * radius * radius }
 def makeLikeMe(that: Shape): Circle = this
}

Circle()

Guidelines of Default
Parameter Values

• Consider default parameter values instead of static
overloading

• Use when there is a common argument value that
is usually used

• A default I/O source, file location, etc.

Imports

Importing a Member of a
Package

import scala.collection.immutable.List

Importing Multiple Members
of a Package

import scala.collection.immutable.{List, Vector}

Importing and Renaming
Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

Importing All Members of a
Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

Combining Notations

import scala.collection.immutable.{_}

same meaning as:

import scala.collection.immutable._

Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames
List to SList

Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package except for
List

Importing a Package

import scala.collection.immutable

Now sub-packages can be denoted by shorter names:

immutable.List

Importing and Renaming
Packages

import scala.collection.{immutable => I}

Allows members to be written like this:

I.List

Importing Members of An
Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be
write like this:

gcd

Implicit Imports

import java.lang._
import scala._
import Predef._

The following imports are implicitly included
in your program:

Package java.lang
• Contains all the standard Java classes

• This import allows you to write things like:

Thread

instead of:

java.lang.Thread

Package scala

• Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

Object Predef

• Definitions of many commonly used types and
methods, such as:

require, ensuring, assert

Visibility Modifier Private

Modifier Explanation

no modifier public access

private private to class Arithmetic

For a method Arithmetic.reduce in package Rationals

Higher Order
Functions

Comprehensions

{2x | x 2 xs}

Mapping a Computation
Over a List

 def double(xs: List) = {
 xs match {
 case Empty => Empty
 case Cons(y,ys) => Cons(2 * y, double(ys))
 }
 }

 def negate(xs: List) = {
 xs match {
 case Empty => Empty
 case Cons(y,ys) => Cons(-y, negate(ys))
 }
 }

Mapping a Computation
Over a List

Negation as a
Comprehension

{�x | x 2 xs}

Generalizing a Mapping
Computation

 def map(f: Int => Int, xs: List) = {
 xs match {
 case Empty => Empty
 case Cons(y,ys) => Cons(f(y), map(f,ys))
 }
 }

Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(-_, xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => 2 * x, xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

Recall Our Sum Function
Over Lists

 def sum(xs: List): Int = {
 xs match {
 case Empty => 0
 case Cons(y,ys) => y + sum(ys)
 }
 }

In Mathematics, We Might
Write this as a Summation

X

x2xs

x

And Our Product Function
Over Lists

 def product(xs: List): Int = {
 xs match {
 case Empty => 1
 case Cons(y,ys) => y * product(ys)
 }
 }

In Mathematics, We Might
Write this as a Product

Y

x2xs

x

We Abstract to a Reduction
Function Over Lists

 def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int = {
 xs match {
 case Empty => base
 case Cons(y,ys) => f(y, reduce(base, f, ys))
 }
 }

Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, (x,y) => x + y, xs) ↦* 21

reduce(1, (x,y) => x * y, xs) ↦* 720

Min and Max

 def max(xs: List) = {
 reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)
 }

 def min(xs: List) = {
 reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)
 }

Simplifying Function Literals
• When each parameter is used only once in the body of a

function literal, and in the order in which they are passed:

• We can drop the parameter list

• We simply write the body with an _ at the place where each
parameter is used

For example,

((x: Int, y: Int) => (x + y))

becomes

_ + _

Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, _+_, xs) ↦* 21

reduce(1, _*_, xs) ↦* 720

Note the multiple parameters

Combining
Map and Reduce

X

x2xs

x

2 + 1

reduce(0, _+_, map(x => x*x + 1, xs))

Combining
Map and Reduce

Summation

 def summation(xs: List, f: Int => Int) =
 reduce(0, _+_, map(f, xs))

Summation

def square(x:Int) = x * x

summation(xs, square(_)+1)

More Syntactic Sugar

• Functions defined with def can be passed as
arguments whenever an expression of a
compatible function type is expected

• What constitutes a compatible function type?

Partially Applied Functions

• If we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => x + 1, xs)

Partially Applied Functions

• If we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => x + 1, xs)

which is equivalent to

map(_ + 1, xs)

Partially Applied Functions
• Eta Expansion: Wrapping a function in function

literal that takes all of the arguments of f and
immediately calls f with those arguments

(x:Int) => square(x)

is equivalent to

square

Mapping a Computation
Over a List

map(x => -x, xs)

We can use eta expansion to pass operators
as arguments:

Mapping a Computation
Over a List

map(-_, xs)

We are also using eta expansion when using
underscore notation:

