Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC
Homework 2 More Time Needed

Frequency

Hours
Homework 2 Workload
Homework 2 Helpful

Frequency

Rating
Homework 2 Enjoyable

- Frequency
- Rating

The bar chart shows the frequency of ratings. The highest frequency is 8 for a rating of 0, and the frequency decreases as the rating increases.
Lectures Easy to Follow

Frequency

Rating
Class Enjoyable

Frequency

Rating

0 1 2 3 4 5
General Functional Programming vs Scala

• The vast majority of topics we have discussed are relevant to any functional programming language:
 • The Substitution and Environment Models
 • The Design Recipe and Templates
 • Abstract and Recursive Datatypes
 • Arrow Types, First-Class Functions
 • Continuations
General Functional Programming vs Scala

- The vast majority of topics we have discussed are relevant to any functional programming language:
 - Parametric Polymorphism
 - Covariance, Contravariance
 - Monads
 - Lexical vs. Dynamic Scoping
 - Call-by-Value vs. Call-by-Name
More on Traits
Thin vs Rich Interfaces

• Traits provide a way to resolve the tension between “thin” and “rich” interfaces:

 • Thin interface: Include only essential methods in an interface
 • Good for implementors

 • Rich interface: Include a rich set of methods in an interface
 • Good for clients
Thin vs Rich Interfaces

• With traits, we can define an interface to include only a small number of essential methods, but then include traits to build rich functionality based on the essential methods

• Implementors win

• Clients win
Thin vs Rich Interfaces

• Consider our implementations of Interval, Rational, Measurement

• We want to include all comparison operators on them:

 \(<\quad \leq\quad \geq\quad >\)

• With traits, we could define just one operator \(<\) and mix in a trait to define the rest in terms of \(<\)
Thin vs Rich Interfaces

case class Measurement(magnitude: BigDecimal,
 unit: PhysicalUnit)
extends Ordered[Measurement]

 def compare(that: Measurement) =
 val (u,m1,m2) = this.unit commonUnits that.unit
 (m1 * magnitude) - (m2 * that.magnitude)

 }

 ...

 }

Traits as Stackable Modifiers

abstract class IntMap {
 def insert(s: String, n: Int): IntMap
 def retrieve(s: String): Int
}
Traits as Stackable Modifiers

case class IntListMap(elements: List[(String, Int)] = Nil) extends IntMap {

 def insert(s: String, n: Int): IntMap =
 IntListMap((s -> n) :: elements)

 def retrieve(s: String) = {
 def retrieve(xs: List[(String, Int)]): Int = {
 xs match {
 case Nil => throw new IllegalArgumentException(s)
 case (t, n) :: ys if (s == t) => n
 case y :: ys => retrieve(ys)
 }
 }
 retrieve(elements)
 }
}
Traits as Stackable Modifiers

```scala
trait Incrementing extends IntMap {
  abstract override def insert(s: String, n: Int) = 
    super.insert(s, n + 1)
}
```

This super call depends on how the trait is mixed into a particular class.
Traits as Stackable Modifiers

trait Filtering extends IntMap {
 abstract override def insert(s: String, n: Int) = {
 if (n >= 0) super.insert(s, n)
 else this
 }
}

As does this one
Traits as Stackable Modifiers

The order in which the traits are listed is important. The trait furthest to the right is called first.

```haskell
> val m = new IntListMap() with Incrementing with Filtering 
  m: IntListMap with Incrementing with Filtering = IntListMap(List())
```
Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List())
Traits as Stackable Modifiers

> res0.retrieve("a")
java.lang.IllegalArgumentException: a
Traits as Stackable Modifiers

> m.insert("a", 1)
res2: IntMap = IntListMap(List((a,2))))
Traits as Stackable Modifiers

> res2.retrieve("a")
res3: Int = 2
Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order
Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List((a,0)))

Now the integer is incremented before filtering, and so it passes the filter
Traits as Stackable Modifiers

> res0.retrieve("a")
res5: Int = 0
Traits vs Multiple Inheritance
Traits vs Multiple Inheritance

• The key property of traits that distinguishes them from multiple inheritance is *linearization*

• With traditional multiple inheritance, which implementation of insert would be called:

```scala
class MyMap() extends IntListMap() with Filtering with Incrementing
  new MyMap().insert("b", 2)
```
Traits vs Multiple Inheritance

- With traits, the effect of a super call is determined by the linearization of traits, which enables:
 - Multiple trait implementation of the same method to be called
 - Multiple ways to compose the traits depending on circumstances
Trait Linearization

class C() extends D() with T1... with TN {
 ...
}

• To linearize class C
 • Linearize class D
 • Extend with the linearization of T1, leaving out classes already linearized
 • Continue until extending with the linearization of TN, leaving out classes already linearized
 • Finally, extend with the body of class C
Trait Linearization

class Furniture
trait Soft extends Furniture
trait Antique extends Furniture
trait Victorian extends Antique
class VictorianChair extends Furniture with Soft with Victorian
Trait Linearization

Antique

Victorian

Soft

Any

AnyRef

Furniture

VictorianChair
Trait Linearization

Antique
 \arrow[red]{<->}{Victorian}
 \arrow[red]{<->}{Soft}

Furniture
 \arrow[red]{<->}{Any}
 \arrow[red]{<->}{AnyRef}

VictorianChair
Trait Linearization

- Antique
- Victorian
- Soft
- VictorianChair
- Any
- AnyRef
- Furniture
Guidelines on Using Traits

• Use concrete classes when the behavior is not reused

• Use traits to capture behavior that is reused in multiple, unrelated classes

• If clients will inherit the behavior, try to make it an abstract class
Generative Recursion
Generative vs Structural Recursion

• The functions we have studied to this point have (mostly) followed a common pattern:

 • Break into cases

 • Decompose data into components

 • Process components (usually recursively)

• Functions that follow this pattern are referred to as structurally recursive functions
Generative vs Structural Recursion

• Some problems are not amenable to solution by recursive descent

• Instead, a deeper insight or “eureka” is required

• Often a result from mathematics or computer science must be applied to discover important structure

• Consider Euclid’s Algorithm for GCD

• The discovery of these insights and construction of solutions using them is the study of algorithms
Generative vs Structural Recursion

• Typically the design of an algorithm distinguishes two kinds of problems:

 • Base cases (or trivially solvable cases)

 • Problems that can be reduced to other problems of the same form

• The design of algorithms using this approach is referred to as generative recursion
Square Roots

• We would like to define a function sqrt that takes a non-negative value of type Double and returns the square root of that value.

• There is no obvious way to apply structural recursion to this problem.
Newton’s Method

• We can use derivatives to find successively better approximations to the zeroes of a real-valued function:

\[f(x) = 0 \]
Newton's Method

- We start with some guess for a value of x

$$x_0 = \text{guess}$$
Newton’s Method

Then we construct a better approximation with the following formula:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]
\[x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \]
\[x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \]
\[x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} \]
Applying Newton’s Method to Finding Square Roots

• We can view the process of finding the square root of a number y as finding a solution to the equation:

\[x^2 = y \]
Applying Newton’s Method to Finding Square Roots

- We can view the process of finding the square root of a number y as finding a solution to the equation:

$$x^2 - y = 0$$
Applying Newton’s Method to Finding Square Roots

• Equivalently, we want to find a zero to the function:

\[f(x) = x^2 - y \]
Newton’s Method

• Plugging in our function f:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
Newton’s Method

• Plugging in our function f:

$$x_{n+1} = x_n - \frac{x_n^2 - y}{2x_n}$$
Newton’s Method

```python
def abs(x: Double) = if (x < 0) -x else x
def square(x: Double) = x * x
```
Newton’s Method

• To encode Newton’s Method as an application of generative recursion:
 • We need to choose an initial guess
 • We need to encode computation of the next guess from our current guess
 • We need to determine our base case
Newton’s Method

- For square roots:
 - Our initial guess can be the parameter
 - Our base case is that our current guess falls within some tolerance of the true square root
def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - (((square(guess) - x) / (2 * guess))))
Newton’s Method

val epsilon = 0.0000000000000001

def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon
def sqrt(x: Double) = {
 val epsilon = 0.0000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

 next(x)
}
Generalizing to an Arbitrary Function

```scala
def newtonsMethod(f: Double => Double) = {
  val epsilon = 0.000000000000001
  val delta = 0.000000001

  def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

  def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

  def next(guess: Double): Double = {
    if (isGoodEnough(guess)) guess
    else next(guess - f(guess) / fPrime(guess))
  }

  next(2)
}
```
Generalizing to an Arbitrary Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0
Not All Applications of Newton’s Method Terminate

• Consider:

\[f(x) = x^2 - x \]

\[f'(x) = 2x - 1 \]

• An initial guess of 0.5 leads us to find the root of a tangent with slope zero (which has no root!)
Not All Applications of Newton’s Method Terminate

newtonsMethod((x: Double) => x*x - x) ↦ ⊥
Design Recipe for Generative Recursion

• Data analysis and design

• Contract, purpose, header: Should now include some description of how the function works

• Examples: Include examples that illustrate how the function proceeds (not just input/output)
Design Recipe for Generative Recursion

• Template:
 • What is trivially solvable?
 • We new sub-problems do we generate?
 • How do we combine solutions to the sub-problems?

• Tests

• A termination argument
A Termination Argument

• With structural recursion, the computation follows the structure of the data

• Because immutable data has no cycles, the computation is certain to terminate

• With generative recursion, the sub-problems might be as large as the original problem

• Thus, we should include an explicit argument that the algorithm terminates