Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments
Call-By-Value and Call-By-Name
Call-By-Value

• Thus far, the evaluation semantics we have studied (both with the substitution and environment models) is known as call-by-value:

• To evaluate a function application, we first evaluate the arguments and then evaluate the function body
Call-By-Value

• We have seen several “special forms” where this evaluation semantics is not what we want:

```plaintext
&& || if-else
```
Call-By-Value

- We could delay evaluation in these cases by wrapping arguments in function literals that take no parameters

```javascript
def myOr(left: Boolean, right: () => Boolean) =
    if (left) true
    else right()
```
Call-By-Value

• We could delay evaluation in these cases by wrapping arguments in function literals that take no parameters

myOr(true, () => 1/0 == 2) ↦ true

• Functions that take no arguments are referred to as thunks
Call-By-Name

- Scala provides a way that we can pass arguments as thunks without having to wrap them explicitly.

```scala
def myOr(left: Boolean, right: => Boolean) =
  if (left) true
  else right()
```

We simply leave off the parentheses in the parameter's type.
Call-By-Name

- Now we can call our function without wrapping the second argument in an explicit thunk:

\[
\text{myOr(} \text{true, } 1/0 == 2) \mapsto \text{true}
\]

- The thunk is applied (to nothing) the first time that the argument is evaluated in a function
Call-By-Name

• We can use by-name parameters to define new control abstractions:

```scala
def myAssert(predicate: => Boolean) = 
  if (assertionsEnabled && !predicate) 
    throw new AssertionError
```
Syntactic Sugar: Braces for Passing Arguments

- Any function that takes a single argument can be applied by passing the argument enclosed in braces instead of parentheses

```python
myAssert {
    2 + 2 == 4
}
```
Syntactic Sugar: Braces for Passing Arguments

• Any function that takes a single argument can be applied by passing the argument enclosed in braces instead of parentheses

```scala
myAssert {
  def double(n: Int) = 2 * n
  double(2) == 4
}
```
The Environment Model of Type Checking
The Environment Model of Type Checking

- We have used environments in type checking to hold the bounds on type parameters
- They can also be used to record the types of names and function parameters
- Rather than thinking of typing rules as substitutions, we can think of them directly as assertions on expressions that we can reason with according to a logic
The Environment Model of Type Checking

- As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a “turnstile” and a typing judgement to the right:

\[
\{T <: \text{Any}\} \vdash T <: T \quad \text{[S-Ref11]}
\]
The Environment Model of Type Checking

- As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a “turnstile” and a typing judgement to the right

\[
\{ T <: N \} \vdash T <: T \quad [S-Ref12]
\]
The Environment Model of Type Checking

• As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a “turnstile” and a typing judgement to the right

\[\Delta \vdash T <: T \quad [S\text{-Ref}l] \]
The Environment Model of Type Checking

- We express typing rules in the context of
 - a type parameter environment and
 - a type environment (mapping names to types)
- We place both environments to the left of the "turnstile" (separated by a semicolon) and a typing judgement to the right:

\[\Delta; \Gamma + \{x:T\} \vdash x:T \]
The Environment Model of Type Checking

- Some typing judgements require assumptions
- We place assumed judgements above a horizontal bar (above the resulting type judgement)

\[
\Delta; (\Gamma + x: N) \vdash e : M \\
\Delta; \Gamma \vdash ((x : N) \Rightarrow e) : (N \Rightarrow M) \quad [T\text{-}Arrow]
\]
The Environment Model of Type Checking

- Function applications involve checking the function and the arguments:

$$
\Delta; \Gamma \vdash e_0 : R \Rightarrow S; \quad \Delta; \Gamma \vdash e_1 : T; \quad \Delta \vdash T <: R; \quad \Delta; \Gamma \vdash e_0 \ e_1 : S \quad [T{-}App]
$$
The Environment Model of Type Checking

• To type check an expression in a pair of environments:

 • Form a proof tree, where each node is the application of an inference rule

 • The root of the tree is the typing judgement we are trying to prove

 • Each premise in a given rule is the root of a subtree proving that premise
The Environment Model of Type Checking

• For each form of expression there is exactly one inference rule

• Therefore, proving a typing judgement is simply a recursive descent over the structure of an expression
Generative Recursion
Generative vs Structural Recursion

• The functions we have studied to this point have (mostly) followed a common pattern:

 • Break into cases

 • Decompose data into components

 • Process components (usually recursively)

• Functions that follow this pattern are referred to as *structurally recursive functions*
Generative vs Structural Recursion

• Some problems are not amenable to solution by recursive descent
 • Instead, a deeper insight or “eureka” is required
 • Often a result from mathematics or computer science must be applied to discover important structure
 • Consider Euclid’s Algorithm for GCD

• The discovery of these insights and construction of solutions using them is the study of algorithms
Generative vs Structural Recursion

• Typically the design of an algorithm distinguishes two kinds of problems:

 • Base cases (or trivially solvable cases)

 • Problems that can be reduced to other problems of the same form

• The design of algorithms using this approach is referred to as generative recursion
Square Roots

• We would like to define a function `sqrt` that takes a non-negative value of type `Double` and returns the square root of that value.

\[x^2 = 2 \]

• There is no obvious way to apply structural recursion to this problem.
Square Roots

• We would like to define a function `sqrt` that takes a non-negative value of type `Double` and returns the square root of that value

\[x^2 - 2 = 0 \]

• There is no obvious way to apply structural recursion to this problem
Newton’s Method

- We can use derivatives to find successively better approximations to the zeroes of a real-valued function:

\[f(x) = 0 \]
Newton’s Method

• We start with some guess for a value of x

$$x_0 = \text{guess}$$
Newton’s Method

Then we construct a better approximation with the following formula:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
Die Funktion und ihre Tangente sind in der Grafik dargestellt.
$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$
\[x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \]
$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)}$
Applying Newton’s Method to Finding Square Roots

We can view the process of finding the square root of a number y as finding a solution to the equation:

$$x^2 = y$$
Applying Newton’s Method to Finding Square Roots

• We can view the process of finding the square root of a number y as finding a solution to the equation:

$$x^2 - y = 0$$
Applying Newton’s Method to Finding Square Roots

- Equivalently, we want to find a zero to the function:

\[f(x) = x^2 - y \]
Newton’s Method

• Plugging in our function \(f \):

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]
Newton’s Method

• Plugging in our function \(f \):

\[
x_{n+1} = x_n - \frac{x_n^2 - y}{2x_n}
\]
Newton’s Method

def abs(x: Double) = if (x < 0) -x else x

def square(x: Double) = x * x
Newton’s Method

• To encode Newton’s Method as an application of generative recursion:

 • We need to choose an initial guess

 • We need to encode computation of the next guess from our current guess

 • We need to determine our base case
Newton’s Method

• For square roots:
 • Our initial guess can be the parameter
 • Our base case is that our current guess falls within some tolerance of the true square root
def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) / (2 * guess)))
Newton’s Method

```scala
val epsilon = 0.0000000000000001

def isGoodEnough(guess: Double) =
    abs(square(guess) - x) <= epsilon
```
def sqrt(x: Double) = {
 val epsilon = 0.0000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

 next(x)
}
def newtonsMethod(f: Double => Double) = {
 val epsilon = 0.000000000000001
 val delta = 0.000000001

 def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

 def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

 def next(guess: Double): Double = {
 if (isGoodEnough(guess)) guess
 else next(guess - f(guess) / fPrime(guess))
 }

 next(2)
}
Generalizing to an Arbitrary Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0
Not All Applications of Newton’s Method Terminate

• Consider:

\[f(x) = x^2 - x \]

\[f'(x) = 2x - 1 \]

• An initial guess of 0.5 leads us to find the root of a tangent with slope zero (which has no root!)
Not All Applications of Newton’s Method Terminate

\[
\text{newtonsMethod}((x: \text{Double}) \Rightarrow x^2 - x) \rightarrow \bot
\]
Design Recipe for Generative Recursion

• Data analysis and design

• Contract, purpose, header: Should now include some description of how the function works

• Examples: Include examples that illustrate how the function proceeds (not just input/output)
Design Recipe for Generative Recursion

• Template:
 • What is trivially solvable?
 • We new sub-problems do we generate?
 • How do we combine solutions to the sub-problems?

• Tests

• A termination argument
A Termination Argument

• With structural recursion, the computation follows the structure of the data

• Because immutable data has no cycles, the computation is certain to terminate

• With generative recursion, the sub-problems might be as large as the original problem

• Thus, we should include an explicit argument that the algorithm terminates