
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Call-By-Value
and

Call-By-Name

Call-By-Value

• Thus far, the evaluation semantics we have studied
(both with the substitution and environment
models) is known as call-by-value:

• To evaluate a function application, we first
evaluate the arguments and then evaluate the
function body

Call-By-Value

• We have seen several “special forms” where this
evaluation semantics is not what we want:

&& || if-else

Call-By-Value
• We could delay evaluation in these cases by

wrapping arguments in function literals that take no
parameters

 def myOr(left: Boolean, right: () => Boolean) =
 if (left) true
 else right()

Call-By-Value
• We could delay evaluation in these cases by

wrapping arguments in function literals that take no
parameters

• Functions that take no arguments are referred to as
thunks

myOr(true, () => 1/0 == 2) ↦ true

Call-By-Name

• Scala provides a way that we can pass arguments
as thunks without having to wrap them explicitly

We simply leave off the parentheses
in the parameter’s type

 def myOr(left: Boolean, right: => Boolean) =
 if (left) true
 else right()

Call-By-Name
• Now we can call our function without wrapping the

second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that
the argument is evaluated in a function

myOr(true, 1/0 == 2) ↦ true

Call-By-Name
• We can use by-name parameters to define new

control abstractions:

 def myAssert(predicate: => Boolean) =
 if (assertionsEnabled && !predicate)
 throw new AssertionError

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
 2 + 2 == 4
}

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
 def double(n: Int) = 2 * n
 double(2) == 4
}

The Environment Model
of Type Checking

The Environment Model of
Type Checking

• We have used environments in type checking to
hold the bounds on type parameters

• They can also be used to record the types of
names and function parameters

• Rather than thinking of typing rules as substitutions,
we can think of them directly as assertions on
expressions that we can reason with according to a
logic

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

{T <: Any} ` T <: T
[S-Refl1]

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

{T <: N} ` T <: T
[S-Refl2]

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

� ` T <: T
[S-Refl]

The Environment Model of
Type Checking

• We express typing rules in the context of

• a type parameter environment and

• a type environment (mapping names to types)

• We place both environments to the left of the
“turnstile” (separated by a semicolon) and a typing
judgement to the right:

�;�+ {x:T} ` x:T

[T-Var]

The Environment Model of
Type Checking

• Some typing judgements require assumptions

• We place assumed judgements above a horizontal
bar (above the resulting type judgement)

�; (�+ x:N) ` e:M

�;� ` ((x:N) => e):(N => M)

[T-Arrow]

The Environment Model of
Type Checking

• Function applications involve checking the function
and the arguments:

�;� ` e0 : R => S; �;� ` e1 : T; � ` T <: R;

�;� ` e0 e1:S
[T-App]

The Environment Model of
Type Checking

• To type check an expression in a pair of
environments:

• Form a proof tree, where each node is the
application of an inference rule

• The root of the tree is the typing judgement we
are trying to prove

• Each premise in a given rule is the root of a
subtree proving that premise

The Environment Model of
Type Checking

• For each form of expression there is exactly one
inference rule

• Therefore, proving a typing judgement is simply a
recursive descent over the structure of an
expression

Generative Recursion

Generative vs Structural
Recursion

• The functions we have studied to this point have
(mostly) followed a common pattern:

• Break into cases

• Decompose data into components

• Process components (usually recursively)

• Functions that follow this pattern are referred to as
structurally recursive functions

Generative vs Structural
Recursion

• Some problems are not amenable to solution by
recursive descent

• Instead, a deeper insight or “eureka” is required

• Often a result from mathematics or computer science
must be applied to discover important structure

• Consider Euclid’s Algorithm for GCD

• The discovery of these insights and construction of
solutions using them is the study of algorithms

Generative vs Structural
Recursion

• Typically the design of an algorithm distinguishes
two kinds of problems:

• Base cases (or trivially solvable cases)

• Problems that can be reduced to other problems
of the same form

• The design of algorithms using this approach is
referred to as generative recursion

Square Roots
• We would like to define a function sqrt that takes

a non-negative value of type Double and returns
the square root of that value

• There is no obvious way to apply structural
recursion to this problem

x

2 = 2

Square Roots
• We would like to define a function sqrt that takes

a non-negative value of type Double and returns
the square root of that value

• There is no obvious way to apply structural
recursion to this problem

x

2 � 2 = 0

Newton’s Method

• We can use derivatives to find successively better
approximations to the zeroes of a real-valued
function:

f(x) = 0

Newton’s Method

• We start with some guess for a value of x

x0 = guess

Newton’s Method

• Then we construct a better approximation with the
following formula:

xn+1 = xn � f(xn)

f

0(xn)

Applying Newton’s Method
to Finding Square Roots

• We can view the process of finding the square root
of a number y as finding a solution to the equation:

x

2 = y

Applying Newton’s Method
to Finding Square Roots

• We can view the process of finding the square root
of a number y as finding a solution to the equation:

x

2 � y = 0

Applying Newton’s Method
to Finding Square Roots

• Equivalently, we want to find a zero to the function:

f(x) = x

2 � y

Newton’s Method

• Plugging in our function f:

xn+1 = xn � f(xn)

f

0(xn)

Newton’s Method

• Plugging in our function f:

xn+1 = xn � x

2
n � y

2xn

Newton’s Method

 def abs(x: Double) = if (x < 0) -x else x
 def square(x: Double) = x * x

Newton’s Method
• To encode Newton’s Method as an application of

generative recursion:

• We need to choose an initial guess

• We need to encode computation of the next
guess from our current guess

• We need to determine our base case

Newton’s Method

• For square roots:

• Our initial guess can be the parameter

• Our base case is that our current guess falls
within some tolerance of the true square root

Newton’s Method

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

Newton’s Method

 val epsilon = 0.000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

Newton’s Method
 def sqrt(x: Double) = {
 val epsilon = 0.000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

 next(x)
 }

Generalizing to an Arbitrary
Function

 def newtonsMethod(f: Double => Double) = {
 val epsilon = 0.000000000000001
 val delta = 0.000000001

 def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

 def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

 def next(guess: Double): Double = {
 if (isGoodEnough(guess)) guess
 else next(guess - f(guess) / fPrime(guess))
 }
 next(2)
 }

Generalizing to an Arbitrary
Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0

Not All Applications of
Newton’s Method Terminate

• Consider:

• An initial guess of 0.5 leads us to find the root of a
tangent with slope zero (which has no root!)

f(x) = x

2 � x

f

0(x) = 2x� 1

Not All Applications of
Newton’s Method Terminate

newtonsMethod((x: Double) => x*x - x) ↦ ⏊

Design Recipe for
Generative Recursion

• Data analysis and design

• Contract, purpose, header: Should now include
some description of how the function works

• Examples: Include examples that illustrate how the
function proceeds (not just input/output)

Design Recipe for
Generative Recursion

• Template:

• What is trivially solvable?

• We new sub-problems do we generate?

• How do we combine solutions to the sub-problems?

• Tests

• A termination argument

A Termination Argument
• With structural recursion, the computation follows

the structure of the data

• Because immutable data has no cycles, the
computation is certain to terminate

• With generative recursion, the sub-problems might
be as large as the original problem

• Thus, we should include an explicit argument that
the algorithm terminates

