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Call-By-Value 
and 

Call-By-Name



Call-By-Value

• Thus far, the evaluation semantics we have studied 
(both with the substitution and environment 
models) is known as call-by-value: 

• To evaluate a function application, we first 
evaluate the arguments and then evaluate the 
function body



Call-By-Value

• We have seen several “special forms” where this 
evaluation semantics is not what we want: 

&&     ||     if-else



Call-By-Value
• We could delay evaluation in these cases by 

wrapping arguments in function literals that take no 
parameters 

  def myOr(left: Boolean, right: () => Boolean) =
    if (left) true
    else right()



Call-By-Value
• We could delay evaluation in these cases by 

wrapping arguments in function literals that take no 
parameters 

• Functions that take no arguments are referred to as 
thunks

myOr(true, () => 1/0 == 2) ↦ true



Call-By-Name

• Scala provides a way that we can pass arguments 
as thunks without having to wrap them explicitly 

We simply leave off the parentheses  
in the parameter’s type

  def myOr(left: Boolean, right: => Boolean) =
    if (left) true
    else right()



Call-By-Name
• Now we can call our function without wrapping the 

second argument in an explicit thunk: 

• The thunk is applied (to nothing) the first time that 
the argument is evaluated in a function 

myOr(true, 1/0 == 2) ↦ true



Call-By-Name
• We can use by-name parameters to define new 

control abstractions: 

  def myAssert(predicate: => Boolean) =
    if (assertionsEnabled && !predicate)
      throw new AssertionError



Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in 
braces instead of parentheses 

myAssert {
  2 + 2 == 4
}



Syntactic Sugar: Braces for 
Passing Arguments

• Any function that takes a single argument can be 
applied by passing the argument enclosed in 
braces instead of parentheses 

myAssert {
  def double(n: Int) = 2 * n
  double(2) == 4
}



The Environment Model 
of Type Checking



The Environment Model of 
Type Checking

• We have used environments in type checking to 
hold the bounds on type parameters 

• They can also be used to record the types of 
names and function parameters 

• Rather than thinking of typing rules as substitutions, 
we can think of them directly as assertions on 
expressions that we can reason with according to a 
logic



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

{T <: Any} ` T <: T
[S-Refl1]



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

{T <: N} ` T <: T
[S-Refl2]



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

� ` T <: T
[S-Refl]



The Environment Model of 
Type Checking

• We express typing rules in the context of  

• a type parameter environment and  

• a type environment (mapping names to types)  

• We place both environments to the left of the 
“turnstile” (separated by a semicolon) and a typing 
judgement to the right: 

�;�+ {x:T} ` x:T

[T-Var]



The Environment Model of 
Type Checking

• Some typing judgements require assumptions 

• We place assumed judgements above a horizontal 
bar (above the resulting type judgement) 

�; (�+ x:N) ` e:M

�;� ` ((x:N) => e):(N => M)

[T-Arrow]



The Environment Model of 
Type Checking

• Function applications involve checking the function 
and the arguments: 

�;� ` e0 : R => S; �;� ` e1 : T; � ` T <: R;

�;� ` e0 e1:S
[T-App]



The Environment Model of 
Type Checking

• To type check an expression in a pair of 
environments: 

• Form a proof tree, where each node is the 
application of an inference rule 

• The root of the tree is the typing judgement we 
are trying to prove 

• Each premise in a given rule is the root of a 
subtree proving that premise



The Environment Model of 
Type Checking

• For each form of expression there is exactly one 
inference rule 

• Therefore, proving a typing judgement is simply a 
recursive descent over the structure of an 
expression



Generative Recursion



Generative vs Structural 
Recursion

• The functions we have studied to this point have 
(mostly) followed a common pattern: 

• Break into cases 

• Decompose data into components 

• Process components (usually recursively) 

• Functions that follow this pattern are referred to as 
structurally recursive functions



Generative vs Structural 
Recursion

• Some problems are not amenable to solution by 
recursive descent 

• Instead, a deeper insight or “eureka” is required 

• Often a result from mathematics or computer science 
must be applied to discover important structure 

• Consider Euclid’s Algorithm for GCD 

• The discovery of these insights and construction of 
solutions using them is the study of algorithms 



Generative vs Structural 
Recursion

• Typically the design of an algorithm distinguishes 
two kinds of problems: 

• Base cases (or trivially solvable cases) 

• Problems that can be reduced to other problems 
of the same form 

• The design of algorithms using this approach is 
referred to as generative recursion



Square Roots
• We would like to define a function sqrt that takes 

a non-negative value of type Double and returns 
the square root of that value 

• There is no obvious way to apply structural 
recursion to this problem

x

2 = 2



Square Roots
• We would like to define a function sqrt that takes 

a non-negative value of type Double and returns 
the square root of that value 

• There is no obvious way to apply structural 
recursion to this problem

x

2 � 2 = 0



Newton’s Method

• We can use derivatives to find successively better 
approximations to the zeroes of a real-valued 
function: 

f(x) = 0



Newton’s Method

• We start with some guess for a value of x 

x0 = guess



Newton’s Method

• Then we construct a better approximation with the 
following formula: 

xn+1 = xn � f(xn)

f

0(xn)





































Applying Newton’s Method 
to Finding Square Roots

• We can view the process of finding the square root 
of a number y as finding a solution to the equation:

x

2 = y



Applying Newton’s Method 
to Finding Square Roots

• We can view the process of finding the square root 
of a number y as finding a solution to the equation:

x

2 � y = 0



Applying Newton’s Method 
to Finding Square Roots

• Equivalently, we want to find a zero to the function:

f(x) = x

2 � y



Newton’s Method

• Plugging in our function f:  

xn+1 = xn � f(xn)

f

0(xn)



Newton’s Method

• Plugging in our function f:  

xn+1 = xn � x

2
n � y

2xn



Newton’s Method

  def abs(x: Double) = if (x < 0) -x else x
  def square(x: Double) = x * x



Newton’s Method
• To encode Newton’s Method as an application of 

generative recursion: 

• We need to choose an initial guess  

• We need to encode computation of the next 
guess from our current guess 

• We need to determine our base case



Newton’s Method

• For square roots: 

• Our initial guess can be the parameter  

• Our base case is that our current guess falls 
within some tolerance of the true square root



Newton’s Method

    def next(guess: Double): Double = 
      if (isGoodEnough(guess)) guess
      else next(guess - ((square(guess) - x) / 
                        (2 * guess)))



Newton’s Method

    val epsilon = 0.000000000000001

    def isGoodEnough(guess: Double) = 
      abs(square(guess) - x) <= epsilon



Newton’s Method
  def sqrt(x: Double) = {
    val epsilon = 0.000000000000001

    def isGoodEnough(guess: Double) = 
      abs(square(guess) - x) <= epsilon
    
    def next(guess: Double): Double = 
      if (isGoodEnough(guess)) guess
      else next(guess - ((square(guess) - x) / 
                        (2 * guess)))
      
    next(x)
  }



Generalizing to an Arbitrary 
Function

  def newtonsMethod(f: Double => Double) = {
    val epsilon = 0.000000000000001
    val delta = 0.000000001
        
    def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

    def fPrime(x: Double) = (f(x + delta) - f(x)) / delta
    
    def next(guess: Double): Double = {
      if (isGoodEnough(guess)) guess
      else next(guess - f(guess) / fPrime(guess))
    }
    next(2)
  }



Generalizing to an Arbitrary 
Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0



Not All Applications of 
Newton’s Method Terminate

• Consider: 

• An initial guess of 0.5 leads us to find the root of a 
tangent with slope zero (which has no root!) 

f(x) = x

2 � x

f

0(x) = 2x� 1



Not All Applications of 
Newton’s Method Terminate

newtonsMethod((x: Double) => x*x - x) ↦ ⏊



Design Recipe for 
Generative Recursion

• Data analysis and design 

• Contract, purpose, header: Should now include 
some description of how the function works 

• Examples: Include examples that illustrate how the 
function proceeds (not just input/output)



Design Recipe for 
Generative Recursion

• Template: 

• What is trivially solvable? 

• We new sub-problems do we generate? 

• How do we combine solutions to the sub-problems? 

• Tests 

• A termination argument



A Termination Argument
• With structural recursion, the computation follows 

the structure of the data 

• Because immutable data has no cycles, the 
computation is certain to terminate 

• With generative recursion, the sub-problems might 
be as large as the original problem 

• Thus, we should include an explicit argument that 
the algorithm terminates


