Comp 311
~unctional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Call-By-Value
and
Call-By-Name

Call-By-Value

* Thus far, the evaluation semantics we have studied
(both with the substitution and environment
models) is known as call-by-value:

* Jo evaluate a function application, we first

evaluate the arguments and then evaluate the
function body

Call-By-Value

* We have seen several “special forms” where this
evaluation semantics is not what we want:

&& | | 1f-else

Call-By-Value

* We could delay evaluation in these cases by
wrapping arguments in function literals that take no
parameters

def myOr(left: Boolean, right: () => Boolean) =
1f (left) true
else right()

Call-By-Value

* We could delay evaluation in these cases by

wrapping arguments in function literals that take no
parameters

myOr(true, () => 1/0 == 2) » true

* Functions that take no arguments are referred to as
thunks

Call-By-Name

e Scala provides a way that we can pass arguments
as thunks without having to wrap them explicitly

def myOr(left: Boolean, right: => Boolean) =
1f (left) true
else right()

We simply leave off the parentheses
In the parameters type

Call-By-Name

 Now we can call our function without wrapping the
second argument in an explicit thunk:

myOr(true, 1/0 == 2) ~ true

* The thunk is applied (to nothing) the first time that
the argument is evaluated in a function

Call-By-Name

* We can use by-name parameters to define new
control abstractions:

def myAssert(predicate: => Boolean) =
1f (assertionskEnabled && !predicate)
throw new AssertionError

Syntactic Sugar: Braces for
Passing Arguments

* Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
2 + 2 == 4
¥

Syntactic Sugar: Braces for
Passing Arguments

* Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
def double(n: Int) = 2 * n
double(2) ==

}

The Environment Model
of Type Checking

The Environment Model of
Type Checking

* \We have used environments in type checking to
hold the bounds on type parameters

* They can also be used to record the types of
names and function parameters

* Rather than thinking of typing rules as substitutions,
we can think of them directly as assertions on

expressions that we can reason with according to a
logic

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

S—Refll
{T<:Any}|—T<:T[efll]

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

S—Refl?2
{T<:N}|—T<:T[ef12]

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

-Refl
AI—T<:T[S Refl]

The Environment Model of
Type Checking

* We express typing rules in the context of

e atype parameter environment and

* atype environment (mapping names to types)

* \We place both environments to the left of the
“turnstile” (separated by a semicolon) and a typing
judgement to the right:

AT

{x:T}Fx:T [I-Var]

The Environment Model of
Type Checking

e Some typing judgements require assumptions

 We place assumed judgements above a horizontal
bar (above the resulting type judgement)

A;(I'+x:N) - e:M
A:T'F ((x:N) => ¢e): (N => M)

[T-Arrow]

The Environment Model of
Type Checking

* Function applications involve checking the function
and the arguments:

AillFe:R=>8 Ailre:T AFT <2 B o, -
AT Fepeq:S >

The Environment Model of
Type Checking

* Jo type check an expression in a pair of
environments:

 Form a proof tree, where each node is the
application of an inference rule

e [he root of the tree is the typing judgement we
are trying to prove

 Each premise in a given rule is the root of a
subtree proving that premise

The Environment Model of
Type Checking

* For each form of expression there is exactly one
iINnference rule

e Therefore, proving a typing judgement is simply a
recursive descent over the structure of an
expression

(Generative Recursion

Generative vs Structural
Recursion

* The functions we have studied to this point have
(mostly) followed a common pattern:

 Break into cases
* Decompose data into components
* Process components (usually recursively)

* Functions that follow this pattern are referred to as
structurally recursive functions

Generative vs Structural
Recursion

e Some problems are not amenable to solution by
recursive descent

* |nstead, a deeper insight or “eureka” is required

e Often a result from mathematics or computer science
must be applied to discover important structure

e Consider Euclid’s Algorithm for GCD

* The discovery of these insights and construction of
solutions using them is the study of algorithms

Generative vs Structural
Recursion

* Jypically the design of an algorithm distinguishes
two kinds of problems:

* Base cases (or trivially solvable cases)

* Problems that can be reduced to other problems
of the same form

* [he design of algorithms using this approach is
referred to as generative recursion

Sqguare Roots

* We would like to define a function sqgrt that takes

a non-negative value of type Double and returns
the square root of that value

* [here is no obvious way to apply structural
recursion to this problem

Sqguare Roots

* We would like to define a function sqgrt that takes

a non-negative value of type Double and returns
the square root of that value

2 —2=0

* [here is no obvious way to apply structural
recursion to this problem

Newton's Method

 We can use derivatives to find successively better
approximations to the zeroes of a real-valued
function:

flz) =0

Newton's Method

* \We start with some guess for a value of X

ro = guess

Newton's Method

* Then we construct a better approximation with the
following formula:

T T ()
mn

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

3) d d
_]lI[IlIlIIIIlII
L L] L] L]

> ‘=

» X

Funktion
Tangente

3) d d
_II[IIIIIIIIIII
L L] L] L]

> ‘=

» X

Funktion
Tangente

L 4 '
_1[1[111111111
] | |

> ‘=

» X

Funktion
Tangente

> ‘=

» X

) d d
I i e — — — — — - — -
L 1 1

Funktion
Tangente

> ‘=

» X

) d d
I i - - - — -
L] 1 1

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

d d
e T T T T T T 1
1 1

> ‘=

» X

d d
i s s o D D D 0 W
1 1

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

Applying Newton's Methoo
to Finding Square Roots

* We can view the process of finding the square root
of a number y as finding a solution to the equation:

L =Y

Applying Newton's Methoo
to Finding Square Roots

* We can view the process of finding the square root
of a number y as finding a solution to the equation:

r"—y=20

Applying Newton's Methoo
to Finding Square Roots

 Equivalently, we want to find a zero to the function:

flz) =2 —y

Newton's Method

* Plugging in our function f:

T

Newton's Method

e Plugging in our function f:

2
Lo — Y

22,

Lnt+l — Ln

Newton's Method

def abs(x: Double) = 1f (Xx < @) -x else x
def square(x: Double) = x * x

Newton's Method

* Jo encode Newton's Method as an application of
generative recursion:

 We need to choose an initial guess

 \We need to encode computation of the next
guess from our current guess

e \We need to determine our base case

Newton's Method

* For square roots:
* Our initial guess can be the parameter

* Our base case is that our current guess falls
within some tolerance of the true square root

Newton's Method

def next(guess: Double): Double =
1t (1sGoodEnough(guess)) guess
else next(guess - ((square(guess) - x) /

(2 * guess)))

Newton's Method

val epsilon = 0.000000000000001

def 1sGoodEnough(guess: Double) =
abs(square(guess) - x) <= epsilon

Newton's Method

def sgrt(x: Double) = {
val epsilon = 0.000000000000001

def 1sGoodEnough(guess: Double) =
abs(square(guess) - x) <= epsilon

def next(guess: Double): Double =
1t (1sGoodEnough(guess)) guess
else next(guess - ((square(guess) - x) /

(2 * guess)))

next(x)
}

Generalizing to an Arbitrary
Function

def newtonsMethod(f: Double => Double) = {
val epsilon = 0.000000000000001
val delta = 0.000000001

def 1sGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

def next(guess: Double): Double = {
1t (1sGoodEnough(guess)) guess
else next(guess - f(guess) / fPrime(guess))

¥
next(2)

Generalizing to an Arbitrary
Function

> newtonsMethod((x: Double) => x*x - 2)
resl: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res@: Double = 10.0

Not All Applications of
Newton's Method Terminate

e Consider:

e An initial guess of 0.5 leads us to find the root of a
tangent with slope zero (which has no root!)

Not All Applications of
Newton's Method Terminate

newtonsMethod((x: Double) => x*x - x) » |

Design Recipe for
Generative Recursion

* Data analysis and design

e Contract, purpose, header: Should now include
some description of how the function works

 Examples: Include examples that illustrate how the
function proceeds (not just input/output)

Design Recipe for
(Generative Recursion
 Jfemplate:
 What is trivially solvable?
* \WWe new sub-problems do we generate”
 How do we combine solutions to the sub-problems?
* Jests

* A termination argument

A lermination Argument

e With structural recursion, the computation follows
the structure of the data

 Because immutable data has no cycles, the
computation is certain to terminate

* With generative recursion, the sub-problems might
be as large as the original problem

* Thus, we should include an explicit argument that
the algorithm terminates

