Comp 311 Functional Programming

Eric Allen, Two Sigma Investments Robert "Corky" Cartwright, Rice University Sagnak Tasirlar, Two Sigma Investments Call-By-Value and Call-By-Name

- Thus far, the evaluation semantics we have studied (both with the substitution and environment models) is known as call-by-value:
 - To evaluate a function application, we first evaluate the arguments and then evaluate the function body

 We have seen several "special forms" where this evaluation semantics is not what we want:

&& II if-else

 We could delay evaluation in these cases by wrapping arguments in function literals that take no parameters

```
def myOr(left: Boolean, right: () => Boolean) =
  if (left) true
  else right()
```

 We could delay evaluation in these cases by wrapping arguments in function literals that take no parameters

$$my0r(true, () \Rightarrow 1/0 == 2) \mapsto true$$

 Functions that take no arguments are referred to as thunks

Call-By-Name

 Scala provides a way that we can pass arguments as thunks without having to wrap them explicitly

```
def myOr(left: Boolean, right: => Boolean) =
  if (left) true
  else right()
```

We simply leave off the parentheses in the parameter's type

Call-By-Name

 Now we can call our function without wrapping the second argument in an explicit thunk:

my0r(true,
$$1/0 == 2$$
) \rightarrow true

 The thunk is applied (to nothing) the first time that the argument is evaluated in a function

Call-By-Name

 We can use by-name parameters to define new control abstractions:

```
def myAssert(predicate: => Boolean) =
  if (assertionsEnabled && !predicate)
  throw new AssertionError
```

Syntactic Sugar: Braces for Passing Arguments

 Any function that takes a single argument can be applied by passing the argument enclosed in braces instead of parentheses

```
myAssert {
   2 + 2 == 4
}
```

Syntactic Sugar: Braces for Passing Arguments

 Any function that takes a single argument can be applied by passing the argument enclosed in braces instead of parentheses

```
myAssert {
   def double(n: Int) = 2 * n
   double(2) == 4
}
```

- We have used environments in type checking to hold the bounds on type parameters
- They can also be used to record the types of names and function parameters
- Rather than thinking of typing rules as substitutions, we can think of them directly as assertions on expressions that we can reason with according to a logic

 As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a "turnstile" and a typing judgement to the right

$$\frac{}{\{T<:\mathtt{Any}\}\vdash T<:T}\, \mathtt{[S-Refl1]}$$

 As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a "turnstile" and a typing judgement to the right

$$\overline{\{T <: N\} \vdash T <: T} \, \texttt{[S-Refl2]}$$

 As a convenient notation, we express subtyping rules in the context of an environment by placing an environment to the left of a "turnstile" and a typing judgement to the right

$$\frac{}{\Delta \vdash T <: T} \text{[S-Refl]}$$

- We express typing rules in the context of
 - a type parameter environment and
 - a type environment (mapping names to types)
- We place both environments to the left of the "turnstile" (separated by a semicolon) and a typing judgement to the right:

$$\frac{}{\Delta;\Gamma+\{\mathtt{x:T}\}\vdash\mathtt{x:T}}\left[\mathtt{T-Var}\right]$$

- Some typing judgements require assumptions
- We place assumed judgements above a horizontal bar (above the resulting type judgement)

$$\frac{\Delta; (\Gamma + x:N) \vdash e:M}{\Delta; \Gamma \vdash ((x:N) \Rightarrow e): (N \Rightarrow M)} [T-Arrow]$$

 Function applications involve checking the function and the arguments:

$$\frac{\Delta; \Gamma \vdash e_0 : R \Rightarrow S; \ \Delta; \Gamma \vdash e_1 : T; \ \Delta \vdash T <: \ R;}{\Delta; \Gamma \vdash e_0 \ e_1 : S} [T-App]$$

- To type check an expression in a pair of environments:
 - Form a proof tree, where each node is the application of an inference rule
 - The root of the tree is the typing judgement we are trying to prove
 - Each premise in a given rule is the root of a subtree proving that premise

- For each form of expression there is exactly one inference rule
- Therefore, proving a typing judgement is simply a recursive descent over the structure of an expression

Generative Recursion

Generative vs Structural Recursion

- The functions we have studied to this point have (mostly) followed a common pattern:
 - Break into cases
 - Decompose data into components
 - Process components (usually recursively)
- Functions that follow this pattern are referred to as structurally recursive functions

Generative vs Structural Recursion

- Some problems are not amenable to solution by recursive descent
 - Instead, a deeper insight or "eureka" is required
 - Often a result from mathematics or computer science must be applied to discover important structure
 - Consider Euclid's Algorithm for GCD
- The discovery of these insights and construction of solutions using them is the study of *algorithms*

Generative vs Structural Recursion

- Typically the design of an algorithm distinguishes two kinds of problems:
 - Base cases (or trivially solvable cases)
 - Problems that can be reduced to other problems of the same form
- The design of algorithms using this approach is referred to as generative recursion

Square Roots

 We would like to define a function sqrt that takes a non-negative value of type Double and returns the square root of that value

$$x^2 = 2$$

 There is no obvious way to apply structural recursion to this problem

Square Roots

 We would like to define a function sqrt that takes a non-negative value of type Double and returns the square root of that value

$$x^2 - 2 = 0$$

 There is no obvious way to apply structural recursion to this problem

Newton's Method

 We can use derivatives to find successively better approximations to the zeroes of a real-valued function:

$$f(x) = 0$$

Newton's Method

We start with some guess for a value of x

$$x_0 = \mathsf{guess}$$

Newton's Method

 Then we construct a better approximation with the following formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Applying Newton's Method to Finding Square Roots

 We can view the process of finding the square root of a number y as finding a solution to the equation:

$$x^2 = y$$

Applying Newton's Method to Finding Square Roots

 We can view the process of finding the square root of a number y as finding a solution to the equation:

$$x^2 - y = 0$$

Applying Newton's Method to Finding Square Roots

Equivalently, we want to find a zero to the function:

$$f(x) = x^2 - y$$

• Plugging in our function **f**:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Plugging in our function f:

$$x_{n+1} = x_n - \frac{x_n^2 - y}{2x_n}$$

```
def abs(x: Double) = if (x < 0) - x else x def square(x: Double) = x * x
```

- To encode Newton's Method as an application of generative recursion:
 - We need to choose an initial guess
 - We need to encode computation of the next guess from our current guess
 - We need to determine our base case

- For square roots:
 - Our initial guess can be the parameter
 - Our base case is that our current guess falls within some tolerance of the true square root

```
def sqrt(x: Double) = {
 val epsilon = 0.00000000000000001
 def isGoodEnough(guess: Double) =
    abs(square(quess) - x) \le epsilon
  def next(guess: Double): Double =
    if (isGoodEnough(guess)) guess
    else next(guess - ((square(guess) - x) /
                      (2 * quess)))
  next(x)
```

Generalizing to an Arbitrary Function

```
def newtonsMethod(f: Double => Double) = {
  val epsilon = 0.0000000000000001
  val delta = 0.000000001
  def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon</pre>
  def fPrime(x: Double) = (f(x + delta) - f(x)) / delta
  def next(guess: Double): Double = {
    if (isGoodEnough(guess)) guess
    else next(guess - f(guess) / fPrime(guess))
  next(2)
```

Generalizing to an Arbitrary Function

```
> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095
```

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0

Not All Applications of Newton's Method Terminate

Consider:

$$f(x) = x^2 - x$$

$$f'(x) = 2x - 1$$

 An initial guess of 0.5 leads us to find the root of a tangent with slope zero (which has no root!)

Not All Applications of Newton's Method Terminate

newtonsMethod((x: Double) => x*x - x) $\rightarrow \bot$

Design Recipe for Generative Recursion

- Data analysis and design
- Contract, purpose, header: Should now include some description of how the function works
- Examples: Include examples that illustrate how the function proceeds (not just input/output)

Design Recipe for Generative Recursion

- Template:
 - What is trivially solvable?
 - We new sub-problems do we generate?
 - How do we combine solutions to the sub-problems?
- Tests
- A termination argument

A Termination Argument

- With structural recursion, the computation follows the structure of the data
- Because immutable data has no cycles, the computation is certain to terminate
- With generative recursion, the sub-problems might be as large as the original problem
- Thus, we should include an explicit argument that the algorithm terminates