How to Decide Between Structural and Generative Recursion

• Structural recursion is typically:
 • Easier to design
 • Easier to understand

• Generative recursion can be faster (sometimes!)
How to Decide Between Structural and Generative Recursion

• As a general guideline:
 • Start with structural recursion
 • If it turns out to be too slow:
 • Explore generatively recursive approaches
Strategies for Generative Recursion
Binary Search

• The strategy of searching over a sequence by breaking in half and searching over just one of them

• Our search for blue-eyed ancestors falls into this category

• We could also use binary search for root finding

• Newton’s Method could be viewed as an optimization on binary search for root finding
Divide and Conquer

- The strategy of breaking a problem into smaller sub-problems of the same type
- Quicksort falls into this category
Quicksort

def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++ List(x) ++ quickSort(larger)
 }
 }
}
Quicksort

def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++ List(x) ++ quickSort(larger)
 }
 }
 }
def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
}
def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
def separate(xs: List[Int], x: Int): (List[Int], List[Int]) = {
 xs match {
 case Nil => (Nil, Nil)
 case y :: ys => {
 val (smaller, larger) = separate(ys, x)
 if (y < x) (y :: smaller, larger)
 else (smaller, y :: larger)
 }
 }
}
Description and Termination

Argument

/**
 * Recurs on two sublists of the given list:
 * All elements smaller than a given “pivot”
 * All elements at least as large as the pivot
 * Appends the recursive solutions.
 * Because each sublist is strictly smaller
 * (the pivot was extracted from the list),
 * we eventually recur on an empty list.
 */

def quickSort(xs: List[Int]): List[Int] = {
 ...
}
}
Backtracking Algorithms
Graph Algorithms

• Many problems can be expressed as traversals or computations over graphs
 • Travel planning
 • Circuit design
 • Social networks
 • etc.
Graph Algorithms

• We consider the problem of finding a path from one vertex to another in a graph
Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

```scala
class Graph(elements: (String, List[String])* extends Function1[String, List[String]] {
  val _elements = Map(elements:_*)
  def apply(s: String) = _elements(s)
}
```
Data Analysis and Design

• We model graphs as Maps of Strings to Lists of Strings

```scala
val sampleGraph =
    new Graph (
        "A" -> List("E", "B"),
        "B" -> List("A"),
        "C" -> List("D"),
        "D" -> List(),
        "E" -> List("C", "F"),
        "F" -> List("A", "G"),
        "G" -> List())
```
What is a Trivially Solvable Problem?

- If the start and end vertices are identical
How Do We Generate Sub-Problems?

- Find nodes connected to start and recur
How Do We Relate the Solutions?

- We need only find one solution; no need to combine multiple solutions
/**
 * Create a path from start to finish in G
 */

def findRoute(start: String, end: String, graph: Graph): List[String]

But what if there is no path?
Options

- Often the result of a computation is that no satisfactory value could be found
 - Lookup in a table with a key that does not exist
 - Attempting to find a path that does not exist
Scala Options

abstract class Option[+A] {...}

object None extends Option[Nothing] {...}

class Some[+A](val contained: A) extends Option[A] {
 ...
}

}
Options Are Monads!

abstract class Option[+A] {
 def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
 def map[B](f: (A) ⇒ B): Option[B]
 def withFilter(p: (A) ⇒ Boolean):
 FilterMonadic[A, collection.Iterable[A]]
}
/**
 * Create a path from start to finish in G, if it exists.
 */

def findRoute(start: String, end: String, graph: Graph):
 Option[List[String]]
def findRoute(start: String, end: String, graph: Graph): Option[List[String]] = {
 if (start == end) Some(List(end))
 else for (route <- routeFromOrigins(graph(start), end, graph))
 yield start :: route
}
Recursive Sub-Problems

```scala
def routeFromOrigins(origins: List[String], destination: String, graph: Graph): Option[List[String]] = {
    origins match {
      case Nil => None
      case origin :: origins => {
        findRoute(origin, destination, graph) match {
          case None => routeFromOrigins(origins, destination, graph)
          case Some(route) => Some(route)
        }
      }
    }
  }
```
Termination

• `routeFromOrigins` is structurally recursive:
 • It terminates provided that `findRoute` terminates

• But `findRoute` terminates only if there are no cycles in the graph it traverses
Accumulating Knowledge
Accumulating Knowledge

• In recursive calls, we need to remember what nodes we have already visited, so we can prevent infinite regress

• We pass this information to recursive calls via an additional “accumulator” parameter
def findRoute(start: String, end: String, graph: Graph, visited: List[String] = Nil): Option[List[String]] = {
 if (start == end) Some(List(end))
 else if (visited contains start) None
 else for (route <- routeFromOrigins(graph(start), end, graph, start :: visited))
 yield start :: route
}
def routeFromOrigins(origins: List[String], destination: String, graph: Graph, visited: List[String] = Nil): Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph, visited) match {
 case None => routeFromOrigins(origins, destination, graph, origin :: visited)
 case Some(route) => Some(route)
 }
 }
 }
}
Accumulators

- Keeping an accumulator parameter allows us to “remember” knowledge from one recursive call to another
- Often essential for correctness in generative recursion
- Also useful for saving space in structural recursion
Accumulators for Structural Recursion

• Let us define a function `relativeToAbsolute`, which:

 • Takes a list of `Double` values, with each value denoting a relative distance to the point to its left

 • Returns a list of `Double` values denoting the absolute distances to the origin
Accumulators for Structural Recursion

becomes

2 3 5 2 8

becomes

2 5 10 12 20
Defining relativeToAbsolute

def relativeToAbsolute[T](xs: List[T]) = {
 xs match {
 case Empty => Empty
 case x :: xs => x :: relativeToAbsolute(map(_ + x)(xs))
 }
}
Defining `relativeToAbsolute`

```scala
def relativeToAbsolute(xs: List[Double]): List[Double] = {
  xs match {
    case Nil => Nil
    case x :: xs => x :: relativeToAbsolute {
      for (x1 <- xs) yield x + x1
    }
  }
}
```

How many steps does it take to compute an application of `relativeToAbsolute`, in comparison to the length of the list?
The Cost of relativeToAbsolute

relativeToAbsolute(List(2,3,5,2,8)) ↦
 List(2,3,5,2,8) match {
 case Empty => Empty
 case x :: xs => x :: relativeToAbsolute(map(_ + x)(xs))
 }
 ↦
2 :: relativeToAbsolute(map(_ + 2)(List(3,5,2,8)) ↦*
2 :: relativeToAbsolute(5 :: map(_ + 2)(List(5,2,8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: map(_ + 2)(List(2,8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: map(_ + 2)(List(8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: map(_ + 2)(List()) ↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: Nil) ↦* ...

The cost of `relativeToAbsolute`

- Each recursive call requires a map over the argument list, which takes n steps for a list of length n

\[
\sum_{i=1}^{n} i = \frac{(n)(1 + n)}{2} = O(n^2)
\]
Big O Notation

• We say:

\[f(x) = O(g(x)) \text{ as } x \to \infty \]

• To mean that there is a constant \(k \) and some value \(x_0 \) such that

\[|f(x)| \leq k|g(x)| \text{ for all } x \geq x_0 \]
Big O Notation

- Typically the part:

 \[\text{as } x \to \infty \]

- is implicit

- Effectively, we are defining equivalence classes of functions
Accumulating Distance to the Origin

- We could reduce the time taken by instead accumulating the distance to the origin in a parameter
Accumulating Distance to the Origin

def relativeToAbsolute(xs: List[Double]) = {
 def inner(xs: List[Double], distanceToOrigin: Double): List[Double] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val xToOrigin = x + distanceToOrigin
 xToOrigin :: inner(xs, xToOrigin)
 }
 }
 }
 inner(xs, 0)
}
Guidelines for Using Accumulators in Functions

• Start with the standard design recipes!
• Add an accumulator *only after* the initial design attempt
Guidelines for Using Accumulators in Functions

• Recognize the benefit to the function of having an accumulator

• Understand what the accumulator denotes
Recognizing the Benefit of an Accumulator

- If the function is structurally recursive and uses an auxiliary function, consider an accumulator

- Study hand evaluations to see if an accumulator helps in reducing time or space costs
Recognizing the Benefit of an Accumulator

```scala
def invert[T](xs: List[T]): List[T] = {
  xs match {
    case Nil => Nil
    case x :: xs => makeLastItem(x, invert(xs))
  }
}

def makeLastItem[T](x: T, xs: List[T]): List[T] = {
  xs match {
    case Nil => List(x)
    case y :: ys => y :: makeLastItem(x, ys)
  }
}
```
Recognizing the Benefit of an Accumulator

• There is nothing for invert to forget

• However, we might consider accumulating the items walked over
Recognizing the Benefit of an Accumulator

def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => …
 case y :: ys => … inner(… ys … y … accumulator …)
 }
 }
 inner(xs, Nil)
}
Recognizing the Benefit of an Accumulator

- The accumulator must stand for a list
- Maybe it could stand for all elements that precede xs
Recognizing the Benefit of an Accumulator

``` scala
def invert[T](xs: List[T]): List[T] = {
  def inner(xs: List[T], accumulator: List[T]): List[T] = {
    xs match {
      case Nil => …
      case y :: ys => … inner(… ys … y :: accumulator)
    }
  }
  inner(xs, Nil)
}
```
Recognizing the Benefit of an Accumulator

- Now it is clear that the accumulator contains all the elements that precede xs *in reverse order*
Recognizing the Benefit of an Accumulator

```scala
def invert[T](xs: List[T]): List[T] = {
  def inner(xs: List[T], accumulator: List[T]): List[T] = {
    xs match {
      case Nil => accumulator
      case y :: ys => inner(ys, y :: accumulator)
    }
  }
  inner(xs, Nil)
}
```
Recognizing the Benefit of an Accumulator

• The key step in the design process is to establish the invariant that describes the relationship between the accumulator and the parameters of a function

• Establish appropriate accumulator invariant is an art that takes practice
Recognizing the Benefit of an Accumulator

def sum1(xs: List[Int]): Int = {
 xs match {
 case Nil => 0
 case y :: ys => y + sum1(ys)
 }
}

An Accumulator for Sum

• We are walking over the elements of a list to return their sum

• The most obvious thing to accumulate is the value of the sum so far
An Accumulator for Sum

```scala
def sum2(xs: List[Int]): Int = {
  def inner(xs: List[Int], accumulator: Int): Int = {
    xs match {
      case Nil => …
      case y :: ys => …inner(…ys … y + accumulator)
    }
  }
  inner(xs, 0)
}
```
An Accumulator for Sum

```scala
def sum2(xs: List[Int]): Int = {
  def inner(xs: List[Int], accumulator: Int): Int = {
    xs match {
      case Nil => accumulator
      case y :: ys => inner(ys, y + accumulator)
    }
  }
  inner(xs, 0)
}
```
An Accumulator for Sum

\[
\begin{align*}
\text{sum1(List(5, 3, 7, 9))} & \mapsto * \\
5 + \text{sum1(List(3, 7, 9))} & \mapsto * \\
5 + 3 + \text{sum1(List(7, 9))} & \mapsto * \\
5 + 3 + 7 + \text{sum1(List(9))} & \mapsto * \\
5 + 3 + 7 + 9 + \text{sum1(List(\))} & \mapsto * \\
5 + 3 + 7 + 9 + 0 & \mapsto \\
8 + 7 + 9 + 0 & \mapsto \\
15 + 9 + 0 & \mapsto \\
24 + 0 & \mapsto \\
24 & \\
\end{align*}
\]
An Accumulator for Sum

\[
\begin{align*}
\text{sum2}(\text{List}(5, 3, 7, 9)) & \mapsto \star \\
\text{inner}(\text{List}(5, 3, 7, 9), 0) & \mapsto \star \\
\text{inner}(\text{List}(3, 7, 9), 5 + 0) & \mapsto \star \\
\text{inner}(\text{List}(3, 7, 9), 5) & \mapsto \star \\
\text{inner}(\text{List}(7, 9), 5 + 3) & \mapsto \star \\
\text{inner}(\text{List}(7, 9), 8) & \mapsto \star \\
\text{inner}(\text{List}(9), 7 + 8) & \mapsto \star \\
\text{inner}(\text{List}(9), 15) & \mapsto \star \\
\text{inner}(\text{List}(), 9 + 15) & \mapsto \star \\
\text{inner}(\text{List}(), 24) & \mapsto \star \\
& 24
\end{align*}
\]
An Accumulator for Sum

• The key advantage of our accumulator version of sum is space

• The advantage is not a matter as to whether the space is used on the stack or in the heap as an argument!

• The ability to reduce the sum as we recur is the primary cause of space savings
def sum3(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: () => Int): Int = {
 xs match {
 case Nil => accumulator()
 case y :: ys => inner(ys, () => (y + accumulator()))
 }
 }
 inner(xs, () => 0)
}