
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

How to Decide Between Structural
and Generative Recursion

• Structural recursion is typically:

• Easier to design

• Easier to understand

• Generative recursion can be faster (sometimes!)

How to Decide Between Structural
and Generative Recursion

• As a general guideline:

• Start with structural recursion

• If it turns out to be too slow:

• Explore generatively recursive approaches

Strategies for
Generative Recursion

Binary Search
• The strategy of searching over a sequence by

breaking in half and searching over just one of
them

• Our search for blue-eyed ancestors falls into this
category

• We could also use binary search for root finding

• Newton’s Method could be viewed as an
optimization on binary search for root finding

Divide and Conquer

• The strategy of breaking a problem into smaller
sub-problems of the same type

• Quicksort falls into this category

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Trivially solvable

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Sub-problems

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Combination

Separate

def separate(xs: List[Int], x: Int): (List[Int], List[Int]) = {
 xs match {
 case Nil => (Nil, Nil)
 case y :: ys => {
 val (smaller, larger) = separate(ys, x)
 if (y < x) (y :: smaller, larger)
 else (smaller, y :: larger)
 }
 }
}

Description and Termination
Argument

 /**
 * Recurs on two sublists of the given list:
 * All elements smaller than a given “pivot”
 * All elements at least as large as the pivot
 * Appends the recursive solutions.
 * Because each sublist is strictly smaller
 * (the pivot was extracted from the list),
 * we eventually recur on an empty list.
 */
 def quickSort(xs: List[Int]): List[Int] = {
 …
 }

Backtracking
Algorithms

Graph Algorithms
• Many problems can be expressed as traversals or

computations over graphs

• Travel planning

• Circuit design

• Social networks

• etc.

Graph Algorithms

• We consider the problem of finding a path from one
vertex to another in a graph

Data Analysis and Design
• We model graphs as Maps of Strings to Lists of

Strings

case class Graph(elements: (String, List[String])*)
extends Function1[String, List[String]] {
 val _elements = Map(elements:_*)
 def apply(s: String) = _elements(s)
}

Data Analysis and Design
• We model graphs as Maps of Strings to Lists of

Strings

 val sampleGraph =
 new Graph ("A" -> List("E", "B"),
 "B" -> List("A"),
 "C" -> List("D"),
 "D" -> List(),
 "E" -> List("C", "F"),
 "F" -> List("A", "G"),
 "G" -> List())

What is a Trivially Solvable
Problem?

• If the start and end vertices are identical

How Do We Generate Sub-
Problems?

• Find nodes connected to start and recur

How Do We Relate the
Solutions?

• We need only find one solution; no need to
combine multiple solutions

Contract Attempt 1

/**
 * Create a path from start to finish in G
 */
def findRoute(start: String, end: String,
 graph: Graph): List[String]

But what if there is no path?

Options

• Often the result of a computation is that no
satisfactory value could be found

• Lookup in a table with a key that does not exist

• Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {…}

object None extends Option[Nothing] {…}

class Some[+A](val contained: A) extends Option[A] {
 …
}

Options Are Monads!

abstract class Option[+A] {
 def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
 def map[B](f: (A) ⇒ B): Option[B]
 def withFilter(p: (A) ⇒ Boolean):
 FilterMonadic[A, collection.Iterable[A]]
}

http://www.scala-lang.org/api/current/scala/Boolean.html
http://www.scala-lang.org/api/current/scala/collection/generic/FilterMonadic.html
http://www.scala-lang.org/api/current/scala/collection/Iterable.html

Contract Attempt 2
/**
 * Create a path from start to finish in G, if
 * it exists.
 */
def findRoute(start: String, end: String,
 graph: Graph):
 Option[List[String]]

Reduce to Backtracking
Cases

 def findRoute(start: String, end: String,
 graph: Graph): Option[List[String]] = {
 if (start == end) Some(List(end))
 else for (route <- routeFromOrigins(graph(start), end, graph))
 yield start :: route
 }

Recursive Sub-Problems
 def routeFromOrigins(origins: List[String], destination: String,
 graph: Graph): Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph) match {
 case None => routeFromOrigins(origins, destination,graph)
 case Some(route) => Some(route)
 }
 }
 }
 }

Termination

• routeFromOrigins is structurally recursive:

• It terminates provided that findRoute terminates

• But findRoute terminates only if there are no
cycles in the graph it traverses

