Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments
Functional Data Structures
Leftist Heaps
Leftist Heaps

• Often in a collection of elements we only need to access the *minimum* element

• A data structure that supports access only to the minimum element is called a *heap*:

 • A tree in which the element at the root of each subtree is the minimum element of that subtree
Leftist Heaps

- Let the *rank* of a node be the length of its *right spine*

- Then a *leftist heap* also satisfies the following property:
 - The rank of a left child is no smaller than the rank of its sibling
Not a Leftist Heap

2
/
4
/
6
/
7
/

7
9
/

11

2, 4, 6, 7, 9, 7, 11

Rank 0
Rank 2
Rank 1
Consequences of the Leftist Property

- The right spine of a node is always the shortest path to a leaf
- The right spine of a node contains $O(\log n)$ elements in the worst case
- The elements along the right spines are in sorted order
Efficient Merging of Two Leftist Heaps

• Intuitively, we can merge two leftist heaps by:

 • Merging their right spines as if they were sorted lists

 • Swapping child nodes along the merged right spine as needed to preserve the leftist property
Leftist Heaps

case class Leaf[T <: Ordered[T]]() extends Heap[T] {
 def rank = 0
 def isEmpty = true

 def merge(that: Heap[T]) = that

 def min = throw new Error("Attempt to call min on an empty heap")
 def deleteMin = throw new Error("Attempt to call deleteMin on an empty heap")
}
Leftist Heaps

case class Branch[T <: Ordered[T]]
 (rank: Int, x: T, left: Heap[T], right: Heap[T]) extends Heap[T] {

 def isEmpty = false

 def merge(that: Heap[T]) = {
 that match {
 case Leaf() => this
 case Branch(_, y, l, r) =>
 if (x <= y) makeBranch(x, left, right merge that)
 else makeBranch(y, l, this merge r)
 }
 }

 def min = x

 def deleteMin = left merge right
}
abstract class Heap[T <: Ordered[T]] {
 def empty = Leaf[T]
 def isEmpty: Boolean

 def insert(element: T): Heap[T] =
 this merge Branch(1, element, empty, empty)

 def merge(that: Heap[T]): Heap[T]

 /* require (! isEmpty) */
 def min: T

 /* require (! isEmpty) */
 def deleteMin: Heap[T]

 def rank: Int

 def makeBranch(x: T, a: Heap[T], b: Heap[T]) = {
 if (a.rank >= b.rank) Branch(b.rank + 1, x, a, b)
 else Branch(a.rank + 1, x, b, a)
 }
}
Red-Black Trees
Red-Black Trees

• With naive binary search trees, lookup can take $O(n)$ time in the worst case

• We can fix this problem by rebalancing the trees as we add elements

• Red-Black trees are one approach to keeping the trees approximately balanced
Red-Black Trees

• Every node is colored either red or black

• All leaf nodes are black

• No red node has a red child

• Every path from the root to a leaf contains the same number of black nodes
An Example Red-Black Tree
Red-Black Trees

• These invariants imply that:

 • The longest possible path from the root to a leaf consists of an alternating sequence of red nodes and black nodes

 • The shortest possible path from the root to a leaf consists of all black nodes

• Thus, there is at most a factor of two difference in length between the shortest and longest paths
Red-Black Trees

sealed abstract class Color
 case object Red extends Color
 case object Black extends Color
Red-Black Trees

sealed abstract class Color

case object Red extends Color

case object Black extends Color

All subclasses of a sealed class must be defined in the same file as the sealed class.
Red-Black Trees

sealed abstract class Color
 case object Red extends Color
 case object Black extends Color

Pattern matching against a sealed class is checked to ensure exhaustiveness.
Strategy for Insertion

• We insert new elements as usual, but then rebalance the tree to maintain the red-black invariants

• At the end of the rebalancing, we recolor the root to black

• This last step cannot violate our invariants
Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
 def empty = Leaf[T]
 def contains(x: T): Boolean
 def insert(x: T): Tree[T] = insertChildren(x) match {
 case Branch(c,l,e,r) => Branch(Black, l, e, r)
 }
 def insertChildren(x: T): Branch[T]
}

We call a helper function insertChildren, which performs the insertion and rebalancing.
abstract class Tree[T <: Ordered[T]] {
 def empty = Leaf[T]
 def contains(x: T): Boolean
 def insert(x: T): Tree[T] = insertChildren(x) match {
 case Branch(c,l,e,r) => Branch(Black, l, e, r)
 }
 def insertChildren(x: T): Branch[T]
}

We take the result from insertChildren, ignore the color of the root and return a tree that is nearly identical except that the root is colored black.
Red-Black Trees

```scala
case class Leaf[T <: Ordered[T]]() extends Tree[T] {
  def contains(x: T) = false
  def insertChildren(x: T) = Branch(Red, this, x, this)
}
```
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

 def contains(x: T) = {
 if (x < element) left contains x
 else if (x > element) right contains x
 else true // x == element
 }

 ...
}
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
 ...
 def insertChildren(x: T) = {
 if (x < element)
 balance(color, left insertChildren x, element, right)
 else if (x > element)
 balance(color, left, element, right insertChildren x)
 else
 this
 }
 ...
}
Rebalancing

• Because the base case of insertChildren (at a leaf node) always inserts a red node, the number of black nodes along each path is unaffected.

• However, the new tree might contain a red node with a red child.
Rebalancing:
There are Four Cases to Consider
Rebalancing:
There are Four Cases to Consider

We use pattern matching to enumerate the cases.
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
...
 }...
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
 ...
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
```scala
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
  (c, l, x, r) match {
    case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    ...
  }
```
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))

 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>

 ...
  ```

```
```scala
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
  (c, l, x, r) match {
    case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
      Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
    ...
  }
```
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 ...
 }
}
def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
}
Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
 ...
 def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
 }
 ...
}
Red-Black Trees

case class Branch[T <: Ordered[T]]
 (color: Color, left: Tree[T], element: T, right: Tree[T])
 extends Tree[T] {

 ...

 def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
 }

 ...

}
Discussion

• This implementation of red-black trees is dramatically simpler than most imperative approaches:

 • Imperative approaches typically include eight cases, branching on the color of the red parent’s sibling

 • These cases help to avoid some assignment and copying in an imperative setting