Comp 311
~unctional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



Changing the State of
Variaples



Changing the State of
Variables

* Thus far, we have focused solely on purely
functional programs

* This approach has gotten us remarkably far

* Sometimes, it is difficult to structure a program
without some notion of stateful variables:

e |/O, GUIs

 Modeling a stateful system in the world



Assignment and Local State

* We view the world as consisting of objects with
state that changes over time

* |t is often natural to model physical systems with
computational objects with state that changes over
time



Assignment and Local State

* |f we choose to model the flow of time In the system
by elapsed time in the computation, we need a way
to change the state of objects as a program runs

* |f we choose to model state using symbolic names
IN our program, we need an assignment operator to
allow for changing the value associated with a
name



Modeling an Address Book

class AddressBook() {
val addresses: Map[String,String] = Map()

def put(name: String, address: String) = {

} ..

def lookup(name: String) = addresses(name)

¥



Modeling an Address Book

class AddressBook() {
var addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
addresses = addresses + (nhame -> address)

¥

def lookup(name: String) = addresses(name)

¥



Sameness and Change

* |In the context of assignment, our notion of equality
becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook



Sameness and Change

» Effectively assignment forces us to view names as
referring not to values, but to places that store
values



Reterential Transparency

* [he notion that equals can be substituted for
equals in an expression without changing the value
of the expression is known as referential

transparency

* Referential transparency is one of the
distinguishing aspects of functional programming

* |tis lost as soon as we introduce assignment



Reterential Transparency

* Without reterential transparency, the notion of what
it means for two objects to be “the same” is far
more difficult to explain

* One approach:

 Modify one object and see whether the other
object has changed in the same way



Reterential Transparency

* One approach:

 Modify one object and see whether the other
object has changed in the same way

* But that involves observing a single object twice

* How do we know we are observing the same
object both times?



Pitfalls of Imperative
Programming

* The order of updates to variables is a classic
source of bugs



def factorial(n: Int) = {
var product = 1
var counter =1
def 1ter(): Int = {
1f (counter > n) {
product
¥
else {
product
counter
1ter()
}

¥
1ter()

product * counter
counter + 1

¥



def factorial(n: Int) = {
var product = 1
var counter =1
def 1ter(): Int = {
1f (counter > n) {

product
¥
else {
product_= product * counter
counter_=~counter + 1
1ter()
}
}
iter() What if the order of these updates

1 were reversed?



Review: [he Environment
Model of Evaluation

* Environments map names to values

* Every expression is evaluated in the context of an

environment



The Environment Model of
Reduction

* Jo evaluate a name, simply reduce to the value it is
mapped to in the environment



The Environment Model of
Reduction

 [o evaluate a function, reduce it to a closure, which
consists of two parts:

* [he body of the function

* The environment in which the body occurs



The Environment Model of
Reduction

* Objects are also modeled as closures
 What is the environment?

 What corresponds to the body of the function?



The Environment Model of
Reduction

e Jo evaluate an application of a closure

* Extend the environment of the closure, mapping
the function’s parameters to argument values

* Evaluate the body of the closure in this new
environment



Variable Rebinding In the
Environment Model

* The environment model provides us with the
necessary machinery to model stateful variables

* Jo evaluate a variable v assignment:

* Rebind the value v maps to in the environment in
which the assignment occurs



Rebinding a Variable in an
Environment

e The rebound value of vis then used in all
subseqguent reductions involving the same
environment

* |ncludes closures involving that environment

* This model of variable assignment pushes the
notion of state out to environments

* The "places” reterred to by variables are simply
components of environments



Example: Pseudo-Random
Number Generation

* [There are many approaches to generating a
pseudo-random stream of Int values

* One common approach is to define a linear
congruential generator (LCQG):

Xni1 = (aX, + ¢) mod m

* [he pseudo-random numbers are the elements of
this recurrence



|_inear Congruential
Generators

LCGs can produce generators capable of passing
formal tests for randomness

The quality of the results is highly dependent on the
iNnitial values selected

Poor statistical properties

Not well suited for cryptographic purposes



A Linear Congruent Generator
(C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 3

def 1nner() = {
seed = (a*seed + b) % m
seed

¥

inner


https://en.wikipedia.org/wiki/C++11

A Linear Congruent Generator
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ~
val g =
< def 1nner() = {

seed = (a*seed + b) % m

seed
o
val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 3 >


https://en.wikipedia.org/wiki/C%2B%2B11

gO<E> -
< def 1nner() = {

seed = (a*seed + b) % m

seed
o
val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 3 >(O<E> »



seed = (a*seed + b) % m

seed,
< val a = 438271
val b = 0
val m = Int.MaxValue

var seed = 3 >

>

seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271

val b = 0

val m = Int.MaxValue

var seed = 3 >




seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 965472>

96542



seed, <val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 96542>

96542

And now the environment closing over
generator g binds seed to 96542.



Mutable Data
Structures



Mutable Data Structures

* Thus far, we have explored only variable
assignment

* |t is often preferable to construct data structures
with state that changes over time



Modeling an Address Book

class AddressBook() {
var addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
addresses = addresses + (name -> address)

¥

def lookup(name: Strin addresses(name)

¥

[t would be nice to simply use a put
operation to insert data into an existing map.



Mutable Data Structures

 We already know how to build mutable data structures:

e Define classes with local variables

 Note that our AddressBooks are themselves mutable
data, given the var modifier on the addresses field

* Consequently, the environment model is all that is
needed to model not only variable assignment, but
arbitrary mutable data



Equality In Scala



Equality In Scala

* [he method eq checks that two objects exist in the
same place



Equality In Scala

* The method == checks the "natural” equality
relation on a type

final def ==Cthat: Any): Boolean =
1f (null eqg this) null eq that
else this equals that



Equality In Scala

* The inherited equal s method is the same as eq

e \We can override the inherited definition

* Case classes override automatically



Pitfalls in Overriding Equals

Wrong signature
Not defining an equivalence relation
Overriding on mutable datatypes

Not overriding hashCode



Wrong Signature

def equals(that: Any): Boolean



Not Defining an Equivalence
Relation

* Equivalence relations are:
e Retlexive
* Symmetric
* [ransitive

* Jo respect symmetry, we are forced to check that
the dynamic types of two objects are identical



Not Defining an Equivalence
Relation

class Point(val x: Int, val y: Int) {
override def equals(that: Any): Boolean = ..

¥

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)



Not Defining an Equivalence
Relation

class Point(val x: Int, val y: Int) {
override def equals(that: Any): Boolean = {
1f (this.getClass != that.get(Class) false
else {
val _point = that.asInstanceOf[Point]
(_point.x == x) && (_point.y == y)
¥
¥
¥

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)



Overriding on Mutable
Datatypes

Just say no.



Viemoization



Fibonaccl Numbers

def fib(n: Int): Int = {
require (n >= 0)
1f (n == 0) 0
else 1f (n==1) 1
else fib(nh - 1) + fib(n - 2)
} ensuring (_ >= 0)



Fibonaccl Numbers

val memoFib: Int => Int =

memoize {
(n: Int) = {
require (n >= 0)
1f (n ==0) 0

else 1f (n == 1) 1
else memoFib(n - 1) + memoFib(n - 2)
} ensuring (_ >= 0)

¥



Viemoize

def memoize(f: Int => Int) = {
val table = mutable.Map[Int,Int]()
(n: Int) =
table.getOrElse(n, {
val result = f(n)
table += (n -> result)
result

¥)



Impact of Effects on
the Design Recipe



Impact of Effects on the
Design Recipe

e Now that functions have effects:

e The documentation should discuss the
observable effects

 Examples should include observable effects

e [Jests should check that effects occur as
expected



Testing Effects

A common approach to testing in the context of
effects is mocking:

* The external objects and APIs our tested code
interfaces with is implemented as mock objects
that behave just well enough to enable the test

* Typically, mock objects should perform
contained and reversible actions!



Scala
Collections Classes



Collections in Scala

Traversable

Iterable

IndexedSeq LinearSeq SortedSet SortedMap




scala.collection.immutable

Traversable

lterable

SortedSet HashMap ListMap

TreeMap

IndexedSeq

Vector Stream




scala.collection.mutable

\\\

P - N

2\

/
DS |
= e




Tralt Traversable

def foreach[U](f: Elem => U)



Indexed vs Linear
Sequences

* Linear sequences are intended for recursive
descent via head and tail (as with Lists)

* |ndexed sequences are intended for random
access to positions (as with Arrays)



Sorted Sets

* Sorted sets are non-repeating ordered collections
of elements

* Canonical implementation is the TreeSet
implementation (which uses red-black trees)



| IstBuffers

* |nthe mutable package

 Constant time prepend and append operations
* Append with +=
* Prepend with +=:

e Obtain a list by invoking tolL1st



ArrayBuffers

* Like an array, but with prepend and append

* Prepending and appending on constant time on
average but occasionally require linear time



Sets and Maps

Mutable and immutable versions of these
collections are available

By detault, you get the immutable versions

Add and subtract elements using += and -=

Add and subtract whole collections using ++= and



