
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Changing the State of
Variables

Changing the State of
Variables

• Thus far, we have focused solely on purely
functional programs

• This approach has gotten us remarkably far

• Sometimes, it is difficult to structure a program
without some notion of stateful variables:

• I/O, GUIs

• Modeling a stateful system in the world

Assignment and Local State

• We view the world as consisting of objects with
state that changes over time

• It is often natural to model physical systems with
computational objects with state that changes over
time

Assignment and Local State

• If we choose to model the flow of time in the system
by elapsed time in the computation, we need a way
to change the state of objects as a program runs

• If we choose to model state using symbolic names
in our program, we need an assignment operator to
allow for changing the value associated with a
name

Modeling an Address Book

class AddressBook() {
 val addresses: Map[String,String] = Map()

 def put(name: String, address: String) = {
 …
 }

 def lookup(name: String) = addresses(name)
}

Modeling an Address Book

class AddressBook() {
 var addresses: Map[String,String] = Map()

 def put(name: String, address: String) = {
 addresses = addresses + (name -> address)
 }

 def lookup(name: String) = addresses(name)
}

Sameness and Change
• In the context of assignment, our notion of equality

becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook

Sameness and Change

• Effectively assignment forces us to view names as
referring not to values, but to places that store
values

Referential Transparency

• The notion that equals can be substituted for
equals in an expression without changing the value
of the expression is known as referential
transparency

• Referential transparency is one of the
distinguishing aspects of functional programming

• It is lost as soon as we introduce assignment

Referential Transparency

• Without referential transparency, the notion of what
it means for two objects to be “the same” is far
more difficult to explain

• One approach:

• Modify one object and see whether the other
object has changed in the same way

Referential Transparency

• One approach:

• Modify one object and see whether the other
object has changed in the same way

• But that involves observing a single object twice

• How do we know we are observing the same
object both times?

Pitfalls of Imperative
Programming

• The order of updates to variables is a classic
source of bugs

 def factorial(n: Int) = {
 var product = 1
 var counter = 1
 def iter(): Int = {
 if (counter > n) {
 product
 }
 else {
 product = product * counter
 counter = counter + 1
 iter()
 }
 }
 iter()
 }

 def factorial(n: Int) = {
 var product = 1
 var counter = 1
 def iter(): Int = {
 if (counter > n) {
 product
 }
 else {
 product = product * counter
 counter = counter + 1
 iter()
 }
 }
 iter()
 }

What if the order of these updates
were reversed?

Review: The Environment
Model of Evaluation

• Environments map names to values

• Every expression is evaluated in the context of an
environment

The Environment Model of
Reduction

• To evaluate a name, simply reduce to the value it is
mapped to in the environment

The Environment Model of
Reduction

• To evaluate a function, reduce it to a closure, which
consists of two parts:

• The body of the function

• The environment in which the body occurs

The Environment Model of
Reduction

• Objects are also modeled as closures

• What is the environment?

• What corresponds to the body of the function?

The Environment Model of
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping
the function’s parameters to argument values

• Evaluate the body of the closure in this new
environment

Variable Rebinding in the
Environment Model

• The environment model provides us with the
necessary machinery to model stateful variables

• To evaluate a variable v assignment:

• Rebind the value v maps to in the environment in
which the assignment occurs

Rebinding a Variable in an
Environment

• The rebound value of v is then used in all
subsequent reductions involving the same
environment

• Includes closures involving that environment

• This model of variable assignment pushes the
notion of state out to environments

• The “places” referred to by variables are simply
components of environments

Example: Pseudo-Random
Number Generation

• There are many approaches to generating a
pseudo-random stream of Int values

• One common approach is to define a linear
congruential generator (LCG):

• The pseudo-random numbers are the elements of
this recurrence

Xn+1 = (aXn + c) mod m

Linear Congruential
Generators

• LCGs can produce generators capable of passing
formal tests for randomness

• The quality of the results is highly dependent on the
initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes

A Linear Congruent Generator
(C++11 minstd_rand)

 def makeRandomGenerator(): () => Int = {
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 3

 def inner() = {
 seed = (a*seed + b) % m
 seed
 }
 inner
 }

https://en.wikipedia.org/wiki/C++11

A Linear Congruent Generator
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g =
< def inner() = {
 seed = (a*seed + b) % m
 seed
 } ,
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 3 >

https://en.wikipedia.org/wiki/C%2B%2B11

g()<E> ↦
< def inner() = {
 seed = (a*seed + b) % m
 seed
 } ,
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 3 >()<E> ↦

seed = (a*seed + b) % m
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 3 >
↦
seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 3 >
↦

seed, <val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 96542>
↦
96542

seed, <val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 96542>
↦
96542

And now the environment closing over
generator g binds seed to 96542.

Mutable Data
Structures

Mutable Data Structures

• Thus far, we have explored only variable
assignment

• It is often preferable to construct data structures
with state that changes over time

Modeling an Address Book

class AddressBook() {
 var addresses: Map[String,String] = Map()

 def put(name: String, address: String) = {
 addresses = addresses + (name -> address)
 }

 def lookup(name: String) = addresses(name)
}

It would be nice to simply use a put
operation to insert data into an existing map.

Mutable Data Structures
• We already know how to build mutable data structures:

• Define classes with local variables

• Note that our AddressBooks are themselves mutable
data, given the var modifier on the addresses field

• Consequently, the environment model is all that is
needed to model not only variable assignment, but
arbitrary mutable data

Equality in Scala

Equality in Scala

• The method eq checks that two objects exist in the
same place

Equality in Scala
• The method == checks the “natural” equality

relation on a type

final def ==(that: Any): Boolean =
 if (null eq this) null eq that
 else this equals that

Equality in Scala

• The inherited equals method is the same as eq

• We can override the inherited definition

• Case classes override automatically

Pitfalls in Overriding Equals

• Wrong signature

• Not defining an equivalence relation

• Overriding on mutable datatypes

• Not overriding hashCode

Wrong Signature

def equals(that: Any): Boolean

Not Defining an Equivalence
Relation

• Equivalence relations are:

• Reflexive

• Symmetric

• Transitive

• To respect symmetry, we are forced to check that
the dynamic types of two objects are identical

Not Defining an Equivalence
Relation

class Point(val x: Int, val y: Int) {
 override def equals(that: Any): Boolean = …
}

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Not Defining an Equivalence
Relation

class Point(val x: Int, val y: Int) {
 override def equals(that: Any): Boolean = {
 if (this.getClass != that.getClass) false
 else {
 val _point = that.asInstanceOf[Point]
 (_point.x == x) && (_point.y == y)
 }
 }
}

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Overriding on Mutable
Datatypes

Just say no.

Memoization

Fibonacci Numbers

 def fib(n: Int): Int = {
 require (n >= 0)
 if (n == 0) 0
 else if (n == 1) 1
 else fib(n - 1) + fib(n - 2)
 } ensuring (_ >= 0)

Fibonacci Numbers
 val memoFib: Int => Int =
 memoize {
 (n: Int) => {
 require (n >= 0)
 if (n == 0) 0
 else if (n == 1) 1
 else memoFib(n - 1) + memoFib(n - 2)
 } ensuring (_ >= 0)
 }

Memoize
 def memoize(f: Int => Int) = {
 val table = mutable.Map[Int,Int]()
 (n: Int) =>
 table.getOrElse(n, {
 val result = f(n)
 table += (n -> result)
 result
 })
 }

Impact of Effects on
the Design Recipe

Impact of Effects on the
Design Recipe

• Now that functions have effects:

• The documentation should discuss the
observable effects

• Examples should include observable effects

• Tests should check that effects occur as
expected

Testing Effects
• A common approach to testing in the context of

effects is mocking:

• The external objects and APIs our tested code
interfaces with is implemented as mock objects
that behave just well enough to enable the test

• Typically, mock objects should perform
contained and reversible actions!

Scala
 Collections Classes

Collections in Scala

scala.collection.immutable

scala.collection.mutable

Trait Traversable

def foreach[U](f: Elem => U)

Indexed vs Linear
Sequences

• Linear sequences are intended for recursive
descent via head and tail (as with Lists)

• Indexed sequences are intended for random
access to positions (as with Arrays)

Sorted Sets

• Sorted sets are non-repeating ordered collections
of elements

• Canonical implementation is the TreeSet
implementation (which uses red-black trees)

ListBuffers
• In the mutable package

• Constant time prepend and append operations

• Append with +=

• Prepend with +=:

• Obtain a list by invoking toList

ArrayBuffers

• Like an array, but with prepend and append

• Prepending and appending on constant time on
average but occasionally require linear time

Sets and Maps
• Mutable and immutable versions of these

collections are available

• By default, you get the immutable versions

• Add and subtract elements using += and -=

• Add and subtract whole collections using ++= and
—=

