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Mechanical Proof 
Checking



Syntax of Propositional 
Logic

S ::= x (1)

| S ^ S (2)

| S _ S (3)

| S ! S (4)

| ¬S (5)



Factory Methods for 
Construction

case object Formulas {

def evar(name: String): Formula

def and(left: Formula, right: Formula): Formula

def or(left: Formula, right: Formula): Formula

def implies(left: Formula, right: Formula): Formula

def not(body: Formula): Formula

}



Sequents

S⇤ ` S



Sequents

• Sequents consist of two parts: 

• The antecedents to the left of the turnstile 

• The consequent to the right of the turnstile 

• Example:

{p, q, ¬r, p ! r} ` ¬p



Sequents

• When the set of antecedents consists of a single 
formula, we often elide the enclosing braces: 

• is equivalent to:

{p} ` p

p ` p



Inference Rules

� ` p � ` q

� [� ` p ^ q
And-Intro



Inference Rules:  
General Form

Q⇤
Q



Inference Rules

� ` p ^ q

� ` p
And-Elim-Left



Inference Rules

� ` p ^ q

� ` q
And-Elim-Right



Inference Rules

� ` p

� ` p _ q
Or-Intro-Left



Inference Rules

� ` p

� ` q _ p
Or-Intro-Right



Inference Rules

� ` p _ q �0 [ {p} ` r �00 [ {q} ` r

� [ �0 [ �00 ` r
Or-Elim



Inference Rules

� [ {p} ` q �0 [ {p} ` ¬q
� [ �0 ` ¬p

Neg-Intro



Inference Rules

� ` ¬¬p
� ` p

Neg-Elim



Inference Rules

� [ {p} ` q

� ` p ! q
Implies-Intro



Inference Rules

� ` p ! q �0 ` p

� [ �0 ` q
Implies-Elim



Inference Rules

p ` p
Identity



Inference Rules

� [ {p} ` p
Assumption



Inference Rules

� ` p

� [ {q} ` p
Generalization



Example Proof 1

p ` p
Identity

; ` p ! p
Implies-Intro



Example Proof 2

p ! q ` p ! q
Identity

p ` p
Identity

{p, p ! q} ` q
Implies-Elim



Example Proof 3

p ^ ¬p ` p ^ ¬p
Identity

p ^ ¬p ` p
And-Elim-Left

p ^ ¬p ` p ^ ¬p
Identity

p ^ ¬p ` ¬p
And-Elim-Right

; ` ¬(p ^ ¬p)
Neg-Intro



Rule Application
case object Rules {

def identity(p: Formula): Sequent

def assumption(s: Sequent): Sequent

def generalization(p: Formula)(s: Sequent): Sequent

def andIntro(left: Sequent, right: Sequent): Sequent

def andElimLeft(s: Sequent): Sequent

def andElimRight(s: Sequent): Sequent

def orIntroLeft(p: Formula)(s: Sequent): Sequent

def orIntroRight(p: Formula)(s: Sequent): Sequent

def orElim(s0: Sequent, s1: Sequent, s2: Sequent): Sequent

def negIntro(p: Formula)(s0: Sequent, s1: Sequent): Sequent

def negElim(s: Sequent): Sequent

def impliesIntro(s: Sequent): Sequent

def impliesElim(p: Formula)(s: Sequent): Sequent

}



The Curry-Howard 
Isomorphism



Simply Typed Expressions

E ::= x
    | 0 | 1 | 2…
    | true | false
    | (x:T) => E
    | E(E)



Simple Types

T ::= Int
    | Boolean
    | T => T



Simple Type Assertions

E:T



Simple Type Assertions

0:Int



Simple Type Assertions

true:Boolean



Simple Type Assertions

(x:Int) => x : Int => Int



Simple Type Assertions

x:Boolean



Assertions Within a Type 
Environment

{x:Boolean}  x:Boolean`



Rules for Checking the Type 
of an Expression

n 2 IntLiteral

� ` n:Int
T-Int



Rules for Checking the Type 
of an Expression

� ` false:Boolean

T-False

� ` true:Boolean

T-True



Rules for Checking the Type 
of an Expression

� [ {x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs



Rules for Checking the Type 
of an Expression

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App



Contrast with Implies-Intro 
For Propositional Logic

� [ {p} ` q

� ` p ! q
Implies-Intro

� [ {x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs



Contrast with Implies-Intro 
For Propositional Logic

� [ {p} ` q

� ` p ! q
Implies-Intro

� [ {x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs



Contrast with Implies-Elim 
From Propositional Logic

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App

� ` p ! q �0 ` p

� [ �0 ` q
Implies-Elim



Contrast with Implies-Elim 
From Propositional Logic

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App

� ` p ! q �0 ` p

� [ �0 ` q
Implies-Elim



Types and Propositions
• We can think of the types in our simple type system 

as corresponding to propositions: 

• Primitive types (Boolean, Int) correspond to 
simple propositions (p, q) 

• Arrow types correspond to logic implication: 

p -> q, (p -> (q -> r)), etc.



Types and Propositions

• For each syntactic form of expression, there is 
exactly one form of rule that contains that syntactic 
form as its result 

• Example: 

� [ {x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs



Types and Propositions
• If we wish to use type rules to prove that an 

expression has a specific type 

• We can start with the expression, and apply the 
rules backwards: 

x:T ` x:T

T-Identity

; ` (x:T) => x : T => T

T-Abs



Types and Propositions

• While working backwards with expressions, there is 
only one choice at each step 

• Thus a well-typed expression E entirely determines 
the form of the proof that E:T 

• But the proof of E:T in our type system is equivalent 
to a proof of T in propositional logic



Types and Propositions

• So, E effectively encodes a proof of type T, thought 
of as a proposition 

• Checking the type T of an expression E is 
equivalent to proving the validity of T



The Curry-Howard 
Isomorphism

• This deep correspondence between types and 
logical assertions is known as the Curry-Howard 
Isomorphism 

• This correspondence goes far beyond just 
propositional logic, extending to predicate 
calculus, modal logic, etc. 

• This leads to the surprising result that the arrow in 
arrow types is really just the implication symbol 
from propositional logic!


