Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert OCorkyO Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Mechanical Proof
Checking

Syntax of Propositional

Logic

S = x
SAS
SV S

S — S

Factory Methods for
Construction

case object Formulas {
def evar(name: String): Formula
def and(left: Formula, right: Formula): Formula
def or(left: Formula, right: Formula): Formula
def implies(left: Formula, right: Formula): Formula
def not(body: Formula): Formula

Seqguents

Sx - S

Seqguents

¥ Sequents consist of two parts:
¥ The antecedents to the left of the turnstile

¥ The consequent to the right of the turnstile

¥ Example:

{p, ¢, -1,p =71} —p

Seqguents

¥ When the set of antecedents consists of a single
formula, we often elide the enclosing braces:

{p}p
¥ IS equivalent to:

prop

Inference Rules

I'Fp Alg
'UAFDPAq

AND-INTRO

Inference Rules:
General Form

Qx
Q

Inference Rules

I'FpAgq
I'Fp

AND-ELIM-LEFT

Inference Rules

I'FpAgq
I'-gq

AND-ELIM-RIGHT

Inference Rules

I'Fp
I'FpVg

OR-INTRO-LEFT

Inference Rules

I'Ep
I'EqVp

OR-INTRO-RIGHT

Inference Rules

I'Epveg T'U{ptkr T"U{qg}Fr
FrUrul” kFr

Or-ELIM

Inference Rules

Fru{ptFq T"U{p}F ¢

/ NEG-INTRO
'l = —p

Inference Rules

I'=——p
I'Fp

Neg-Elim

Inference Rules

'U{p}Fq
I'Fp—gq

IMPLIES-INTRO

Inference Rules

'Fp—=qg TVFp
FTul” g

Implies-Elim

Inference Rules

IDENTITY
pEp

Inference Rules

ASSUMPTION
Fu{p}kp

Inference Rules

I'EDp
Fu{ag}Fp

(FENERALIZATION

Example Proof 1

IDENTITY

prEDp

IMPLIES-INTRO
DEp—op

Example Proof 2

IDENTITY IDENTITY
p—>qbp—yq pEp

IMPLIES-ELIM

{p, p—q}tFq

Example Proof 3

IDENTITY IDENTITY
pA-pEDPA-—p pA—-pEDPA-—p

AND-ELIM-LEFT AND-ELIM-RIGHT

pA—-pED pA—pE—p
NEG-INTRO

D —=(pA—p)

Rule Application

case object Rules {

def
def
def
def
def
def
def
def
def
def
def
def
def

identity(p: Formula): Sequent

assumption(s: Sequent): Sequent

generalization(p: Formula) (s: Sequent): Sequent
andIntro(left: Sequent, right: Sequent): Sequent
andElimLeft(s: Sequent): Sequent

andElimRight (s: Sequent): Sequent

orIntrolLeft(p: Formula) (s: Sequent): Sequent
orIntroRight (p: Formula) (s: Sequent): Sequent
orElim(s0O: Sequent, sl: Sequent, s2: Sequent): Sequent
negIntro(p: Formula) (sO: Sequent, sl: Sequent): Sequent
negElim(s: Sequent): Sequent

impliesIntro(s: Sequent): Sequent

impliesElim(p: Formula) (s: Sequent): Sequent

The Curry-Howard
Isomorphism

Simply Typed Expressions

E ::= X

o1 11 2.
true | false
(x:T) == E
ECE)

Simple Types

T ::= Int
Boolean
T =T

Simple Type Assertions

E:T

Simple Type Assertions

0:1Int

Simple Type Assertions

true:Boolean

Simple Type Assertions

(x:Int) == x : Int => Int

Simple Type Assertions

X :Boolean

Assertions Within a Type
Environment

{Xx:Boolean} x:Boolean

Rules for Checking the Type
of an Expression

n € IntLiteral
['n:Int

T-INT

Rules for Checking the Type
of an Expression

T-TRUE

I' - true:Boolean

T-FALSE

['+ false:Boolean

Rules for Checking the Type
of an Expression

U{x:S}FE:T
'+ (x:8)=>E : S=>T

T-ABS

Rules for Checking the Type
of an Expression

''+E:S=>T TI'+E:S

; T-APP
I'FE(E):T

Contrast with Implies-Intro
For Propositional Logic

I'u{p} kg
I'-p—q

IMPLIES-INTRO

'U{x:S} FE:T
' (x:8)=>E : S=>T

T-ABS

Contrast with Implies-Intro
For Propositional Logic

IF'u{p}tgq
IMPLIES-INTRO

I'-p—q

Contrast with Implies-Elim
From Propositional Logic

'Fp—qg TVEFp
Tul'tgq

Implies-Elim

'+E:S=>T TI'+E:S

; T-APP
I'FE(E):T

Contrast with Implies-Elim
From Propositional Logic

'Fp—qg TVEFp

Implies-Elim

Tul'tgq

Types and Propositions

¥ We can think of the types In our simple type system
as corresponding to propositions:

¥ Primitive types (Boolean, Int) correspond to
simple propositions (p, Q)

¥ Arrow types correspond to logic implication:

p ->q, (p -> (q -> r)),etc.

Types and Propositions

¥ For each syntactic form of expression, there Is
exactly one form of rule that contains that syntactic
form as its result

¥ Example:

['U{x:S} FE:T
I'F (x:8)=>E : S=>T

T-ABS

Types and Propositions

¥ If we wish to use type rules to prove that an
expression has a specibc type

¥ We can start with the expression, and apply the
rules backwards:

T-1DENTITY
T-ABS

X:T FEXT
DFXT) ==x: T=T

Types and Propositions

¥ While working backwards with expressions, there Is
only one choice at each step

¥ Thus a well-typed expression E entirely determines
the form of the proof that E:T

¥ But the proof of E:T In our type system is equivalent
to a proof of T in propositional logic

Types and Propositions

¥ S0, E effectively encodes a proof of type T, thought
of as a proposition

¥ Checking the type T of an expression E Is
equivalent to proving the validity of T

The Curry-Howard
Isomorphism

¥ This deep correspondence between types and
logical assertions is known as the Curry-Howard
[somorphism

¥ This correspondence goes far beyond just
propositional logic, extending to predicate
calculus, modal logic, etc.

¥ This leads to the surprising result that the arrow In
arrow types is really just the implication symbol
from propositional logic!

