
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments

Mechanical Proof
Checking

Syntax of Propositional
Logic

S ::= x (1)

| S ^ S (2)

| S _ S (3)

| S ! S (4)

| ¬S (5)

Factory Methods for
Construction

case object Formulas {

def evar(name: String): Formula

def and(left: Formula, right: Formula): Formula

def or(left: Formula, right: Formula): Formula

def implies(left: Formula, right: Formula): Formula

def not(body: Formula): Formula

}

Sequents

S⇤ ` S

Sequents

• Sequents consist of two parts:

• The antecedents to the left of the turnstile

• The consequent to the right of the turnstile

• Example:

{p, q, ¬r, p ! r} ` ¬p

Sequents

• When the set of antecedents consists of a single
formula, we often elide the enclosing braces:

• is equivalent to:

{p} ` p

p ` p

Inference Rules

� ` p � ` q

� [� ` p ^ q
And-Intro

Inference Rules:
General Form

Q⇤
Q

Inference Rules

� ` p ^ q

� ` p
And-Elim-Left

Inference Rules

� ` p ^ q

� ` q
And-Elim-Right

Inference Rules

� ` p

� ` p _ q
Or-Intro-Left

Inference Rules

� ` p

� ` q _ p
Or-Intro-Right

Inference Rules

� ` p _ q �0 [{p} ` r �00 [{q} ` r

� [�0 [�00 ` r
Or-Elim

Inference Rules

� [{p} ` q �0 [{p} ` ¬q
� [�0 ` ¬p

Neg-Intro

Inference Rules

� ` ¬¬p
� ` p

Neg-Elim

Inference Rules

� [{p} ` q

� ` p ! q
Implies-Intro

Inference Rules

� ` p ! q �0 ` p

� [�0 ` q
Implies-Elim

Inference Rules

p ` p
Identity

Inference Rules

� [{p} ` p
Assumption

Inference Rules

� ` p

� [{q} ` p
Generalization

Example Proof 1

p ` p
Identity

; ` p ! p
Implies-Intro

Example Proof 2

p ! q ` p ! q
Identity

p ` p
Identity

{p, p ! q} ` q
Implies-Elim

Example Proof 3

p ^ ¬p ` p ^ ¬p
Identity

p ^ ¬p ` p
And-Elim-Left

p ^ ¬p ` p ^ ¬p
Identity

p ^ ¬p ` ¬p
And-Elim-Right

; ` ¬(p ^ ¬p)
Neg-Intro

Rule Application
case object Rules {

def identity(p: Formula): Sequent

def assumption(s: Sequent): Sequent

def generalization(p: Formula)(s: Sequent): Sequent

def andIntro(left: Sequent, right: Sequent): Sequent

def andElimLeft(s: Sequent): Sequent

def andElimRight(s: Sequent): Sequent

def orIntroLeft(p: Formula)(s: Sequent): Sequent

def orIntroRight(p: Formula)(s: Sequent): Sequent

def orElim(s0: Sequent, s1: Sequent, s2: Sequent): Sequent

def negIntro(p: Formula)(s0: Sequent, s1: Sequent): Sequent

def negElim(s: Sequent): Sequent

def impliesIntro(s: Sequent): Sequent

def impliesElim(p: Formula)(s: Sequent): Sequent

}

The Curry-Howard
Isomorphism

Simply Typed Expressions

E ::= x
 | 0 | 1 | 2…
 | true | false
 | (x:T) => E
 | E(E)

Simple Types

T ::= Int
 | Boolean
 | T => T

Simple Type Assertions

E:T

Simple Type Assertions

0:Int

Simple Type Assertions

true:Boolean

Simple Type Assertions

(x:Int) => x : Int => Int

Simple Type Assertions

x:Boolean

Assertions Within a Type
Environment

{x:Boolean} x:Boolean`

Rules for Checking the Type
of an Expression

n 2 IntLiteral

� ` n:Int
T-Int

Rules for Checking the Type
of an Expression

� ` false:Boolean

T-False

� ` true:Boolean

T-True

Rules for Checking the Type
of an Expression

� [{x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs

Rules for Checking the Type
of an Expression

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App

Contrast with Implies-Intro
For Propositional Logic

� [{p} ` q

� ` p ! q
Implies-Intro

� [{x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs

Contrast with Implies-Intro
For Propositional Logic

� [{p} ` q

� ` p ! q
Implies-Intro

� [{x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs

Contrast with Implies-Elim
From Propositional Logic

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App

� ` p ! q �0 ` p

� [�0 ` q
Implies-Elim

Contrast with Implies-Elim
From Propositional Logic

� ` E:S=>T � ` E0:S

� ` E(E0):T
T-App

� ` p ! q �0 ` p

� [�0 ` q
Implies-Elim

Types and Propositions
• We can think of the types in our simple type system

as corresponding to propositions:

• Primitive types (Boolean, Int) correspond to
simple propositions (p, q)

• Arrow types correspond to logic implication:

p -> q, (p -> (q -> r)), etc.

Types and Propositions

• For each syntactic form of expression, there is
exactly one form of rule that contains that syntactic
form as its result

• Example:

� [{x:S} ` E:T

� ` (x:S)=>E : S=>T

T-Abs

Types and Propositions
• If we wish to use type rules to prove that an

expression has a specific type

• We can start with the expression, and apply the
rules backwards:

x:T ` x:T

T-Identity

; ` (x:T) => x : T => T

T-Abs

Types and Propositions

• While working backwards with expressions, there is
only one choice at each step

• Thus a well-typed expression E entirely determines
the form of the proof that E:T

• But the proof of E:T in our type system is equivalent
to a proof of T in propositional logic

Types and Propositions

• So, E effectively encodes a proof of type T, thought
of as a proposition

• Checking the type T of an expression E is
equivalent to proving the validity of T

The Curry-Howard
Isomorphism

• This deep correspondence between types and
logical assertions is known as the Curry-Howard
Isomorphism

• This correspondence goes far beyond just
propositional logic, extending to predicate
calculus, modal logic, etc.

• This leads to the surprising result that the arrow in
arrow types is really just the implication symbol
from propositional logic!

