
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Actions

• Next year: Switch the order of Assignments 2 and 3

• Make the link to abstract datatypes more explicit

• Minimize constraints on file and directory layouts

Comments

• Design vs functional programming

• Correctness points on homeworks

Functional
Data Structures

Leftist Heaps

Leftist Heaps

• Often in a collection of elements we only need to
access the minimum element

• A data structure that supports access only to the
minimum element is called a heap:

• A tree in which the element at the root of each
subtree is the minimum element of that subtree

Leftist Heaps

• Let the rank of a node be the length of its right
spine

• Then a leftist heap also satisfies the following
property:

• The rank of a left child is no smaller than the rank
of its sibling

Consequences of the Leftist
Property

• The right spine of a node is always the shortest
path to a leaf

• The right spine of a node contains O(log n)
elements in the worst case

• The elements along the right spines are in sorted
order

Efficient Merging of Two
Leftist Heaps

• Intuitively, we can merge two leftist heaps by:

• Merging their right spines as if they were sorted
lists

• Swapping child nodes along the merged right
spine as needed to preserve the leftist property

Leftist Heaps
abstract class Heap[T <: Ordered[T]] {
 def empty = Leaf[T]
 def isEmpty: Boolean

 def insert(element: T): Heap[T] = this merge Branch(1, element, empty, empty)
 def merge(that: Heap[T]): Heap[T]

 /* require (! isEmpty) */
 def min: T

 /* require (! isEmpty) */
 def deleteMin: Heap[T]

 def rank: Int

 def makeBranch(x: T, a: Heap[T], b: Heap[T]) = {
 if (a.rank >= b.rank) Branch(b.rank + 1, x, a, b)
 else Branch(a.rank + 1, x, b, a)
 }
}

Leftist Heaps

case class Leaf[T <: Ordered[T]]() extends Heap[T] {
 def rank = 0
 def isEmpty = true

 def merge(that: Heap[T]) = that

 def min = throw new Error("Attempt to call min on an empty heap")
 def deleteMin = throw new Error("Attempt to call deleteMin on an empty heap")
}

Leftist Heaps
case class Branch[T <: Ordered[T]](rank: Int, x: T, left: Heap[T], right: Heap[T])
extends Heap[T] {
 def isEmpty = false

 def merge(that: Heap[T]) = {
 that match {
 case Leaf() => this
 case Branch(_, y, l, r) =>
 if (x <= y) makeBranch(x, left, right merge that)
 else makeBranch(y, l, this merge r)
 }
 }
 def min = x
 def deleteMin = left merge right
}

Red-Black Trees

Red-Black Trees

• With naive binary search trees, lookup can take
O(n) time in the worst case

• We can fix this problem by rebalancing the trees as
we add elements

• Red-Black trees are one approach to keeping the
trees approximately balanced

Red-Black Trees

• Every node is colored either red or black

• All leaf nodes are black

• No red node has a red child

• Every path from the root to a leaf contains the same
number of black nodes

An Example Red-Black Tree

CB

A

ED

EE

E E

Red-Black Trees
• These invariants imply that:

• The longest path from the root to a leaf consists
of an alternating sequence of red nodes and
black nodes

• The shortest path from the root to a leaf consists
of all black nodes

• Thus, there is at most a factor of two difference in
length between the shortest and longest paths

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

All subclasses of a sealed class must be defined
in the same file as the sealed class.

Red-Black Trees

sealed abstract class Color
case object Red extends Color
case object Black extends Color

Pattern matching against a sealed class
is checked to ensure exhaustiveness.

Strategy for Insertion

• We insert new elements as usual, but then
rebalance the tree to maintain the red-black
invariants

• At the end of the rebalancing, we recolor the root to
black

• This cannot violate our invariants

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
 def empty = Leaf[T]
 def contains(x: T): Boolean
 def insert(x: T): Tree[T] = insertChildren(x) match {
 case Branch(c,l,e,r) => Branch(Black, l, e, r)
 }
 def insertChildren(x: T): Branch[T]
}

We call a helper function insertChildren,
which performs the insertion and rebalancing.

Red-Black Trees

abstract class Tree[T <: Ordered[T]] {
 def empty = Leaf[T]
 def contains(x: T): Boolean
 def insert(x: T): Tree[T] = insertChildren(x) match {
 case Branch(c,l,e,r) => Branch(Black, l, e, r)
 }
 def insertChildren(x: T): Branch[T]
}

We take the result from insertChildren, ignore
the color of the root and return a tree that is nearly identical

except that the root is colored black.

Red-Black Trees

case class Leaf[T <: Ordered[T]]() extends Tree[T] {
 def contains(x: T) = false
 def insertChildren(x: T) = Branch(Red, this, x, this)
}

Red-Black Trees

case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {

 def contains(x: T) = {
 if (x < element) left contains x
 else if (x > element) right contains x
 else true // x == element
 }
 …
}

Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
 …
 def insertChildren(x: T) = {
 if (x < element)
 balance(color, left insertChildren x, element, right)
 else if (x > element)
 balance(color, left, element, right insertChildren x)
 else this
 }
 …
}

Rebalancing

• Because the base case of insertChildren (at a leaf
node) always inserts a red node, the number of
black nodes along each path is unaffected

• However, the new tree might contain a red node
with a red child

There are Four Cases to
Consider

Z

X

Y

a b

c

d

Z

X

Y
a

b c

d

Z

X

Y

a b

c

d
ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 …
 }
 }
 …
}

Z

X

Y

a b

c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

Z

X

Y

a b

c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

Z

X

Y

a b

c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

Z

X

Y

a b

c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …
}

ZX

Y

a b c d

Z

X

Y
a

b c

d
ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …

Z

X

Y
a

b c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }
 …

ZX

Y

a b c d

X

Y

Z
a

b c

d

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }

X

Y

Z
a

b c

d

X

Y

Z
a

b c

d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }

ZX

Y

a b c d

X

Y

Z
a

b

c d

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }

X

Z

Y
a

b

c d

ZX

Y

a b c d

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {

 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 …
 }
 }

def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
}

Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
 …
 def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
 }
 …
}

Unfortunately, all four consequences are syntactically
identical

Red-Black Trees
case class Branch[T <: Ordered[T]]
(color: Color, left: Tree[T], element: T, right: Tree[T])
extends Tree[T] {
 …
 def balance(c: Color, l: Tree[T], x: T, r: Tree[T]) = {
 (c, l, x, r) match {
 case (Black, Branch(Red, Branch(Red, a, x, b), y, c), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, Branch(Red, a, x, Branch(Red, b, y, c)), z, d) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, Branch(Red, b, y, c), z, d)) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case (Black, a, x, Branch(Red, b, y, Branch(Red, c, z, d))) =>
 Branch(Red, Branch(Black, a, x, b), y, Branch(Black, c, z, d))
 case _ => Branch(c, l, x, r)
 }
 }
 …
}

In some languages (such as ML) we could factor this
out with“or” patterns

Discussion
• This implementation of red-black trees is

dramatically simpler than most imperative
approaches:

• Imperative approaches include eight cases,
branching on the color of the red parent’s sibling

• These cases help to avoid some assignment and
copying in an imperative setting

