
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments

Options

• Often the result of a computation is that no
satisfactory value could be found

• Lookup in a table with a key that does not exist

• Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {…}

case object None extends Option[Nothing] {…}

case class Some[+A](val contained: A) extends Option[A]
{
 …
}

Options Are Monads!

abstract class Option[+A] {
 def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
 def map[B](f: (A) ⇒ B): Option[B]
 def withFilter(p: (A) ⇒ Boolean):
 FilterMonadic[A, collection.Iterable[A]]
}

http://www.scala-lang.org/api/current/scala/Boolean.html
http://www.scala-lang.org/api/current/scala/collection/generic/FilterMonadic.html
http://www.scala-lang.org/api/current/scala/collection/Iterable.html

Contract Attempt 2
/**
 * Create a path from start to finish in G, if
 * it exists.
 */
def findRoute(start: String, end: String,
 graph: Graph):
 Option[List[String]]

Reduce to Backtracking
Cases

 def findRoute(start: String, end: String,
 graph: Graph): Option[List[String]] = {
 if (start == end) Some(List(end))
 else for (route <- routeFromOrigins(graph(start), end, graph))
 yield start :: route
 }

Recursive Sub-Problems
 def routeFromOrigins(origins: List[String], destination: String,
 graph: Graph): Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph) match {
 case None => routeFromOrigins(origins, destination,graph)
 case Some(route) => Some(route)
 }
 }
 }
 }

Termination

• routeFromOrigins is structurally recursive:

• terminates provided that findRoute terminates

• findRoute terminates only if graph is acyclic

Accumulating
Knowledge

Accumulating Knowledge

• Remember visited nodes to prevent infinite regress

• Pass this to recursive calls via “accumulator”

Reduce to Backtracking

 def findRoute(start: String, end: String, graph: Graph,
 visited: List[String] = Nil):
 Option[List[String]] = {
 if (start == end) Some(List(end))
 else if (visited contains start) None
 else for (route <- routeFromOrigins(graph(start), end, graph,
 start :: visited))
 yield start :: route
 }

Reduce to Backtracking
 def routeFromOrigins(origins: List[String], destination: String,
 graph: Graph, visited: List[String] = Nil):
 Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph, visited) match {
 case None => routeFromOrigins(origins, destination,
 graph, origin :: visited)
 case Some(route) => Some(route)
 }
 }
 }
 }

Accumulators

• accumulator parameter allows us to “remember”
knowledge from one recursive call to another

• Often essential for correctness in generative recursion

• Also useful for saving space in structural recursion

Accumulators for Structural
Recursion

• Let us define a function fromOrigin, which:

• Takes a list of Int values, with each value
denoting a relative distance to the point to its left

• Returns a list of Int values denoting the
absolute distances to the origin

Accumulators for Structural
Recursion

2 3 5 2 8

2 5 10 12 20

becomes

Defining fromOrigin

def fromOrigin[T](xs: List[T]) = {
 xs match {
 case Nil => Nil
 case x :: xs => x :: (fromOrigin {xs} map {_+x})
 }
}

Defining fromOrigin
def fromOrigin (xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs =>
 x :: (for (y <- fromOrigin(xs)) yield {y+x})
 }
}

How many steps does it take to compute an application
of fromOrigin, in comparison to the length of the list?

cost of fromOrigin
fromOrigin(List(2,3,5,2,8)) ↦
 List(2,3,5,2,8) match {
 case Empty => Empty
 case x :: xs => x :: (fromOrigin {xs} map {_+x})
 } ↦
2 :: (fromOrigin(List(3,5,2,8)) map (_+2)) ↦*
2 :: (3 :: (fromOrigin(List(5,2,8) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(5, 7, 15) map (_+3))) map(_+2)) ↦*
2 :: (3 :: (List(8, 10, 18)) map(_+2)) ↦*
2 :: (List(5, 10, 12, 20)) ↦*
List(2, 5, 10, 12, 20)

The cost of fromOrigin
• Each recursive call map over the argument list

• which takes n steps for a list of length n

nX

i=1

i =
(n)(1 + n)

2
= O(n2)

Big O Notation
• We say:

• To mean that there is a constant k and some value x0
such that

f(x) = O(g(x)) as x ! 1

|f(x)| k|g(x)| for all x � x0

Big O Notation
• Typically the part:

• is implicit

• Effectively, we are defining equivalence classes of
functions

as x ! 1

Accumulating Distance to
the Origin

• We could reduce the time taken by instead
accumulating the distance to the origin in a
parameter

Accumulating Distance to
the Origin

def fromOriginAcc(xs: List[Int]) = {
 def inner(xs: List[Int], fromOrigin: Int): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val xToOrigin = x + fromOrigin
 xToOrigin :: inner(xs, xToOrigin)
 }
 }
 }
 inner(xs, 0)
}

Guidelines for Using
Accumulators in Functions

• Start with the standard design recipes!

• Add an accumulator only after the initial design attempt

Guidelines for Using
Accumulators in Functions

• Recognize the benefit of having an accumulator

• Understand what the accumulator denotes

• If the function is structurally recursive and uses an
auxiliary function, consider an accumulator

• Study hand evaluations to see if an accumulator
helps in reducing time or space costs

Recognizing the Benefit of
an Accumulator

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 xs match {
 case Nil => Nil
 case x :: xs => makeLastItem(x, invert(xs))
 }
 }

 def makeLastItem[T](x: T, xs: List[T]): List[T] = {
 xs match {
 case Nil => List(x)
 case y :: ys => y :: makeLastItem(x, ys)
 }
 }

Recognizing the Benefit of
an Accumulator

• there is nothing for invert to forget

• consider accumulating the items walked over

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => …
 case y :: ys => … inner(… ys … y … accumulator …)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• accumulator must stand for a list

• it could stand for all elements that precede xs

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => …
 case y :: ys => … inner(… ys … y :: accumulator)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• Now it is clear that the accumulator contains all the
elements that precede xs in reverse order

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => accumulator
 case y :: ys => inner(ys, y :: accumulator)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• The key step in the design process is to establish
the invariant that describes the relationship
between the accumulator and the parameters of a
function

• Establish appropriate accumulator invariant is an
art that takes practice

Recognizing the Benefit of
an Accumulator

 def sum1(xs: List[Int]): Int = {
 xs match {
 case Nil => 0
 case y :: ys => y + sum1(ys)
 }
 }

An Accumulator for Sum

• walking over elements of a list to return their sum

• obvious thing to accumulate is the the sum so far

An Accumulator for Sum

 def sum2(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: Int): Int = {
 xs match {
 case Nil => accumulator
 case y :: ys => inner(ys, y + accumulator)
 }
 }
 inner(xs, 0)
 }

An Accumulator for Sum
sum1(List(5, 3, 7, 9)) ↦*
5 + sum1(List(3, 7, 9)) ↦*
5 + 3 + sum1(List(7, 9)) ↦*
5 + 3 + 7 + sum1(List(9)) ↦*

5 + 3 + 7 + 9 + sum1(List()) ↦*
5 + 3 + 7 + 9 + 0 ↦
8 + 7 + 9 + 0 ↦
15 + 9 + 0 ↦

24 + 0 ↦
24

An Accumulator for Sum
sum2(List(5, 3, 7, 9)) ↦*

inner(List(5, 3, 7, 9), 0) ↦*
inner(List(3, 7, 9), 5 + 0) ↦*
inner(List(3, 7, 9), 5) ↦*
inner(List(7, 9), 5 + 3) ↦*

inner(List(7, 9), 8) ↦*
inner(List(9), 7 + 8) ↦*
inner(List(9), 15) ↦*

inner(List(), 9 + 15) ↦*
inner(List(), 24) ↦*

24

An Accumulator for Sum
• The key advantage of our accumulator version of

sum is space

• The advantage is not a matter as to whether the
space is used on the stack or in the heap as an
argument!

• The ability to reduce the sum as we recur is the
primary cause of space savings

This Would Not Save Space

 def sum3(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: () => Int): Int = {
 xs match {
 case Nil => accumulator()
 case y :: ys => inner(ys, () => (y + accumulator()))
 }
 }
 inner(xs, () => 0)
 }

Thoughts on Accumulators

• Accumulator-based functions are not always faster

• Accumulator-based factorial tends to be slower

• Accumulator-based functions do not always take
less space

Thoughts on Accumulators

• Accumulator-based functions are usually harder to
understand

• Programmers new to functional programming are
seduced by them because sometimes they can be
similar to loops

Thoughts on Accumulators

• Use accumulators judiciously and understand the
benefits you are trying to achieve

Accumulators and Trees

abstract class Tree[+T]

case object Empty extends Tree[Nothing]

case class Branch[+T](data: T, left: Tree[T], right: Tree[T])
extends Tree[T]

Accumulators and Trees

 def height[T](tree: Tree[T]): Int = {
 tree match {
 case Empty => 0
 case Branch(d,l,r) => max(height(l), height(r)) + 1
 }
 }

Accumulators and Trees

• One natural thing to try is to include an
accumulator of type Int

• This accumulator can maintain the distance we
have descended from the root of the tree

Accumulators and Trees

 def height2[T](tree: Tree[T]): Int = {
 def inner(tree: Tree[T], accumulator: Int): Int = {
 tree match {
 case Empty => accumulator
 case Branch(d,l,r) => max(inner(l, accumulator + 1),
 inner(r, accumulator + 1))
 }
 }
 inner(tree, 0)
 }

Family Trees Revisited

abstract class FamilyTree

case object Empty extends FamilyTree

case class Cons(father: FamilyTree, mother: FamilyTree,
 name: String, birthYear: Int, eyes: String)
extends FamilyTree

Family Trees Revisited

• Let’s develop a method blueEyedAncestors that
finds all blue-eyed ancestors in a tree

Family Trees Revisited
 def blueEyedAncestors(tree: FamilyTree): List[String] = {
 tree match {
 case Empty => Nil
 case Cons(father,mother,name,_,eyes) => {
 val inParents = blueEyedAncestors(father) ++
 blueEyedAncestors(mother)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }

Family Trees Revisited

• We have defined a structurally recursive function
that relies on an auxiliary recursive function: ++

• As discussed, functions of this form often benefit
from the use of an accumulator

• We sketch a template for our accumulator-based
function in the usual way

Family Trees Revisited
 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: ...) = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(...father...accumulator...) ...
 inner(...mother...accumulator...)
 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree...)
 }

Formulating an Accumulator
Invariant

• Our accumulator should remember knowledge about
the family tree lost as we descend the tree

• There are two recursive applications: To the father
tree and the mother tree

• Options:

• Denote all blue-eyed ancestors encountered so far

• Denote all the trees we still need to look at

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Return type is determined by our choice of
accumulator invariant

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

We must pass in the result of one descent to
the other to maintain the invariant.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Thus, our combining operator is function
composition.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Our choice of invariant determines what
to return in the Empty case.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Our choice also determines the initial
value of the accumulator.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

We must cons the mother tree on our accumulator
for the recursive call to father, to maintain our

invariant.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Naturally, the only tree to process initially is tree,
so our accumulator is Nil.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

The Empty case is more difficult for this
accumulator invariant.

Option 2: Denote All Family
Trees Not Yet Processed

• When the tree is empty, we choose the next
element in our accumulator to recur on

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]): List[String] = {
 tree match {
 case Empty => accumulator match {
 case Nil => Nil
 case tree :: trees => inner(tree, trees)
 }
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Tail Recursion

Tail Recursion

• Some functions defined using accumulators have a
special property:

• The recursive call occurs as the last step in the
computation

Nats

abstract class Nat {
 def !(): Nat
 def *(m: Nat): Nat
 def +(m: Nat): Nat
}

Note that this is a postfix operator.
(This follows from the rules for
method application syntax.)

Nats

case object Zero extends Nat {
 def !() = Next(Zero)
 def *(m: Nat) = Zero
 def +(m: Nat) = m
}

Nats

case class Next(n: Nat) extends Nat {
 def !() = this * (n!)
 def *(m: Nat) = m + (n * m)
 def +(m: Nat) = Next(n + m)
}

Nats

Next(Next(Next(Zero)))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero)! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Zero! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Next(Zero) ↦
…
Next(Next(Next(Next(Next(Next(Zero)))))

Pure Recursion

 def !() = this * (n!)

Tail Recursion
 def !() = {
 def inner(n: Nat, acc: Nat): Nat = {
 n match {
 case Zero => acc
 case Next(m) => inner(m, n * acc)
 }
 }
 inner(this, Next(Zero))
 }
 }

Nats

Next(Next(Next(Zero)))! ↦
inner(Next(Next(Next(Zero))), Next(Zero)) ↦
inner(Next(Next(Zero)), Next(Next(Next(Zero)))) ↦
inner(Next(Zero), Next(Next(Next(Next(Next(Next(Zero)))))) ↦
inner(Zero, Next(Next(Next(Next(Next(Next(Zero)))))) ↦
Next(Next(Next(Next(Next(Next(Zero))))))

Translating for Ints
 def factorial(n: Int): Int = {
 if (n == 0) 1
 else n * factorial(n - 1)
 }

 def factorial2(n: Int) = {
 def inner(n: Int, acc: Int): Int = {
 if (n == 0) acc
 else inner(n - 1, n * acc)
 }
 inner(n, 1)
 }

Pure Recursion with Ints

3! ↦
3 * 2! ↦
3 * 2 * 1! ↦
3 * 2 * 1 * 0! ↦
3 * 2 * 1 * 1 ↦
…
6

Tail Recursion with Ints

3! ↦
inner(3, 1) ↦
inner(2, 3) ↦
inner(1, 6) ↦
inner(0, 6) ↦
6

