## Comp 311 Functional Programming

Eric Allen, Two Sigma Investments Robert "Corky" Cartwright, Rice University Sağnak Taşırlar, Two Sigma Investments

## Options

- Often the result of a computation is that no satisfactory value could be found
  - Lookup in a table with a key that does not exist
  - Attempting to find a path that does not exist

## Scala Options

#### abstract class Option[+A] {...}

}

case object None extends Option[Nothing] {...}

case class Some[+A](val contained: A) extends Option[A]
{

## **Options Are Monads!**

abstract class Option[+A] {
 def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
 def map[B](f: (A) ⇒ B): Option[B]
 def withFilter(p: (A) ⇒ Boolean):
 FilterMonadic[A, collection.Iterable[A]]
}

## Contract Attempt 2

```
/**
```

\* Create a path from start to finish in G, if \* it exists.

\*/

#### Reduce to Backtracking Cases

## Recursive Sub-Problems

### Termination

- routeFromOrigins is structurally recursive:
  - terminates provided that findRoute terminates
- findRoute terminates only if graph is acyclic

Accumulating Knowledge

## Accumulating Knowledge

- Remember visited nodes to prevent infinite regress
- Pass this to recursive calls via "accumulator"

## Reduce to Backtracking

}

## Reduce to Backtracking

```
def routeFromOrigins(origins: List[String], destination: String,
                     graph: Graph, visited: List[String] = Nil):
Option[List[String]] = {
  origins match {
    case Nil => None
    case origin :: origins => {
      findRoute(origin, destination, graph, visited) match {
        case None => routeFromOrigins(origins, destination,
                                      graph, origin :: visited)
        case Some(route) => Some(route)
```

### Accumulators

- accumulator parameter allows us to "remember" knowledge from one recursive call to another
  - Often essential for correctness in generative recursion
  - Also useful for saving space in structural recursion

#### Accumulators for Structural Recursion

- Let us define a function **fromOrigin**, which:
  - Takes a list of Int values, with each value denoting a relative distance to the point to its left
  - Returns a list of Int values denoting the absolute distances to the origin

#### Accumulators for Structural Recursion



## Defining fromOrigin

```
def fromOrigin[T](xs: List[T]) = {
    xs match {
        case Nil => Nil
        case x :: xs => x :: (fromOrigin {xs} map {_+x})
    }
}
```

## Defining fromOrigin

```
def fromOrigin (xs: List[Int]): List[Int] = {
    xs match {
        case Nil => Nil
        case x :: xs =>
            x :: (for (y <- fromOrigin(xs)) yield {y+x})
        }
    }
}</pre>
```

How many steps does it take to compute an application of fromOrigin, in comparison to the length of the list?

## cost of fromOrigin

## The cost of from Origin

- Each recursive call map over the argument list
  - which takes *n* steps for a list of length *n*

$$\sum_{i=1}^{n} i = \frac{(n)(1+n)}{2} = O(n^2)$$

## Big O Notation

• We say:

$$f(x) = O(g(x)) \text{ as } x \to \infty$$

 To mean that there is a constant k and some value x<sub>0</sub> such that

$$|f(x)| \leq k|g(x)|$$
 for all  $x \geq x_0$ 

## Big O Notation

• Typically the part:

as 
$$x \to \infty$$

• is implicit

 Effectively, we are defining equivalence classes of functions

# Accumulating Distance to the Origin

 We could reduce the time taken by instead accumulating the distance to the origin in a parameter

# Accumulating Distance to the Origin

```
def fromOriginAcc(xs: List[Int]) = {
  def inner(xs: List[Int], fromOrigin: Int): List[Int] = {
    xs match {
      case Nil => Nil
      case x :: xs => {
        val xToOrigin = x + fromOrigin
        xToOrigin :: inner(xs, xToOrigin)
      }
    }
  }
  inner(xs, 0)
}
```

#### Guidelines for Using Accumulators in Functions

- Start with the standard design recipes!
- Add an accumulator only after the initial design attempt

#### Guidelines for Using Accumulators in Functions

- Recognize the benefit of having an accumulator
- Understand what the accumulator denotes

- If the function is structurally recursive and uses an auxiliary function, consider an accumulator
  - Study hand evaluations to see if an accumulator helps in reducing time or space costs

```
def invert[T](xs: List[T]): List[T] = {
 xs match {
    case Nil => Nil
    case x :: xs => makeLastItem(x, invert(xs))
 }
}
def makeLastItem[T](x: T, xs: List[T]): List[T] = {
 xs match {
    case Nil => List(x)
    case y :: ys => y :: makeLastItem(x, ys)
 }
}
```

- there is nothing for invert to forget
- consider accumulating the items walked over

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => ...
            case y :: ys => ... inner(... ys ... y ... accumulator ...)
        }
    }
    inner(xs, Nil)
}
```

- accumulator must stand for a list
- it could stand for all elements that precede xs

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => ...
            case y :: ys => ... inner(... ys ... y :: accumulator)
        }
    }
    inner(xs, Nil)
}
```

 Now it is clear that the accumulator contains all the elements that precede xs in reverse order

```
def invert[T](xs: List[T]): List[T] = {
    def inner(xs: List[T], accumulator: List[T]): List[T] = {
        xs match {
            case Nil => accumulator
            case y :: ys => inner(ys, y :: accumulator)
        }
    }
    inner(xs, Nil)
}
```

- The key step in the design process is to establish the invariant that describes the relationship between the accumulator and the parameters of a function
- Establish appropriate accumulator invariant is an art that takes practice

```
def sum1(xs: List[Int]): Int = {
    xs match {
        case Nil => 0
        case y :: ys => y + sum1(ys)
    }
}
```

## An Accumulator for Sum

- walking over elements of a list to return their sum
- obvious thing to accumulate is the the sum so far
## An Accumulator for Sum

```
def sum2(xs: List[Int]): Int = {
    def inner(xs: List[Int], accumulator: Int): Int = {
        xs match {
            case Nil => accumulator
            case y :: ys => inner(ys, y + accumulator)
        }
    }
    inner(xs, 0)
}
```

### An Accumulator for Sum

 $sum1(List(5, 3, 7, 9)) \rightarrow *$  $5 + sum1(List(3, 7, 9)) \rightarrow *$  $5 + 3 + \text{sum1(List(7, 9))} \rightarrow *$  $5 + 3 + 7 + \text{sum1(List(9))} \rightarrow *$  $5 + 3 + 7 + 9 + sum1(List()) \rightarrow *$  $5 + 3 + 7 + 9 + 0 \mapsto$  $8 + 7 + 9 + 0 \mapsto$  $15 + 9 + 0 \mapsto$ 24 + 0 ↦ 24

An Accumulator for Sum sum2(List(5, 3, 7, 9)) →\* inner(List(5, 3, 7, 9), 0)  $\mapsto$ \* inner(List(3, 7, 9), 5 + 0)  $\rightarrow$ \* inner(List(3, 7, 9), 5)  $\mapsto^*$ inner(List(7, 9), 5 + 3)  $\mapsto$ \* inner(List(7, 9), 8)  $\mapsto$ \* inner(List(9), 7 + 8)  $\mapsto$ \* inner(List(9), 15)  $\mapsto$ \* inner(List(), 9 + 15)  $\rightarrow$ \* inner(List(), 24)  $\mapsto$ \* 74

# An Accumulator for Sum

- The key advantage of our accumulator version of sum is space
- The advantage is not a matter as to whether the space is used on the stack or in the heap as an argument!
- The ability to reduce the sum as we recur is the primary cause of space savings

### This Would Not Save Space

```
def sum3(xs: List[Int]): Int = {
    def inner(xs: List[Int], accumulator: () => Int): Int = {
        xs match {
            case Nil => accumulator()
            case y :: ys => inner(ys, () => (y + accumulator()))
        }
    }
    inner(xs, () => 0)
}
```

### Thoughts on Accumulators

- Accumulator-based functions are not always faster
  - Accumulator-based factorial tends to be slower
- Accumulator-based functions do not always take less space

### Thoughts on Accumulators

- Accumulator-based functions are usually harder to understand
- Programmers new to functional programming are seduced by them because sometimes they can be similar to loops

### Thoughts on Accumulators

 Use accumulators judiciously and understand the benefits you are trying to achieve

abstract class Tree[+T]

case object Empty extends Tree[Nothing]

case class Branch[+T](data: T, left: Tree[T], right: Tree[T])
extends Tree[T]

```
def height[T](tree: Tree[T]): Int = {
   tree match {
     case Empty => 0
     case Branch(d,l,r) => max(height(l), height(r)) + 1
   }
}
```

- One natural thing to try is to include an accumulator of type Int
- This accumulator can maintain the distance we have descended from the root of the tree

abstract class FamilyTree

case object Empty extends FamilyTree

 Let's develop a method blueEyedAncestors that finds all blue-eyed ancestors in a tree

```
def blueEyedAncestors(tree: FamilyTree): List[String] = {
  tree match {
    case Empty => Nil
    case Cons(father,mother,name,_,eyes) => {
      val inParents = blueEyedAncestors(father) ++
                      blueEyedAncestors(mother)
      eyes match {
        case "blue" => name :: inParents
        case _ => inParents
      }
```

- We have defined a structurally recursive function that relies on an auxiliary recursive function: ++
- As discussed, functions of this form often benefit from the use of an accumulator
- We sketch a template for our accumulator-based function in the usual way

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: ...) = {
    tree match {
      case Empty => {...}
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(...father...accumulator...) ...
                        inner(...mother...accumulator...)
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
    }
  }
  inner(tree...)
}
```

### Formulating an Accumulator Invariant

- Our accumulator should remember knowledge about the family tree lost as we descend the tree
- There are two recursive applications: To the father tree and the mother tree
- Options:
  - Denote all blue-eyed ancestors encountered so far
  - Denote all the trees we still need to look at

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
  inner(tree, Nil)
}
```

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                        Return type is determined by our choice of
                                  accumulator invariant
  }
  inner(tree, Nil)
```

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                       We must pass in the result of one descent to
                            the other to maintain the invariant.
  inner(tree, Nil)
```

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                         Thus, our combining operator is function
                                      composition.
  }
  inner(tree, Nil)
```

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                         Our choice of invariant determines what
                               to return in the Empty case.
  }
  inner(tree, Nil)
```

```
def blueEyedAncestors2(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[String]):
  List[String] = {
    tree match {
      case Empty => accumulator
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, inner(mother, accumulator))
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
                          Our choice also determines the initial
      }
                                value of the accumulator.
  }
  inner(tree, Nil)
```

```
def blueEyedAncestors3(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
  List[String] = {
    tree match {
      case Empty => {...}
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, mother :: accumulator)
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
                   We must cons the mother tree on our accumulator
      }
                      for the recursive call to father, to maintain our
  }
                                       invariant.
  inner(tree, Nil)
```

```
def blueEyedAncestors3(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
  List[String] = {
    tree match {
      case Empty => {...}
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, mother :: accumulator)
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                    Naturally, the only tree to process initially is tree,
                               so our accumulator is Nil.
  }
  inner(tree, Nil)
```

```
def blueEyedAncestors3(tree: FamilyTree): List[String] = {
  def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
  List[String] = {
    tree match {
      case Empty => {...}
      case Cons(father, mother, name, _, eyes) => {
        val inParents = inner(father, mother :: accumulator)
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
      }
                         The Empty case is more difficult for this
                                 accumulator invariant.
  }
  inner(tree, Nil)
```

• When the tree is empty, we choose the next element in our accumulator to recur on

```
def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]): List[String] = {
    tree match {
      case Empty => accumulator match {
        case Nil => Nil
        case tree :: trees => inner(tree, trees)
      }
      case Cons(father,mother,name,_,eyes) => {
        val inParents = inner(father, mother :: accumulator)
        eyes match {
          case "blue" => name :: inParents
          case _ => inParents
        }
     }
   }
  }
  inner(tree, Nil)
}
```

### Tail Recursion

# Tail Recursion

- Some functions defined using accumulators have a special property:
  - The recursive call occurs as the last step in the computation

abstract class Nat {
 def !(): Nat
 def \*(m: Nat): Nat
 def +(m: Nat): Nat
}

Note that this is a postfix operator. (This follows from the rules for method application syntax.)

```
case object Zero extends Nat {
  def !() = Next(Zero)
  def *(m: Nat) = Zero
  def +(m: Nat) = m
}
```

case class Next(n: Nat) extends Nat {
 def !() = this \* (n!)
 def \*(m: Nat) = m + (n \* m)
 def +(m: Nat) = Next(n + m)
}

```
Next(Next(Next(Zero)))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero)! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Zero! ↦
Mext(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Next(Zero) ↦
...
```

Next(Next(Next(Next(Next(Zero)))))

### Pure Recursion

#### def !() = this \* (n!)
## Tail Recursion

```
def !() = {
  def inner(n: Nat, acc: Nat): Nat = {
    n match {
      case Zero => acc
      case Next(m) => inner(m, n * acc)
    }
  }
  inner(this, Next(Zero))
```

#### Nats

Next(Next(Next(Zero)))! → inner(Next(Next(Next(Zero))), Next(Zero)) → inner(Next(Next(Zero)), Next(Next(Next(Zero)))) → inner(Next(Zero), Next(Next(Next(Next(Next(Next(Zero)))))) → inner(Zero, Next(Next(Next(Next(Next(Next(Zero)))))) → Next(Next(Next(Next(Next(Next(Zero))))))

# Translating for Ints

```
def factorial(n: Int): Int = {
    if (n == 0) 1
    else n * factorial(n - 1)
}
```

```
def factorial2(n: Int) = {
    def inner(n: Int, acc: Int): Int = {
        if (n == 0) acc
        else inner(n - 1, n * acc)
     }
     inner(n, 1)
}
```

## Pure Recursion with Ints

- 3!  $\mapsto$ 3 \* 2!  $\mapsto$ 3 \* 2 \* 1!  $\mapsto$ 3 \* 2 \* 1 \* 0!  $\mapsto$ 3 \* 2 \* 1 \* 1  $\mapsto$ ...
- 6

### Tail Recursion with Ints

 $3! \mapsto$ inner(3, 1) ↦ inner(2, 3) ↦ inner(1, 6) ↦ inner(0, 6) ↦ 6