Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments
Streams
Streams

- a form of “lazy” sequence
- inspired by signal-processing (e.g. digital circuits)
 - Components accept *streams* of signals as input, transform their input, and produce streams of signals as outputs
abstract class Stream[+T] {
 def head(): T
 def tail(): Stream[T]
 def map[S](f: T => S): Stream[S]
 def flatMap[S](f: T => Stream[S]): Stream[S]
 def ++[S >: T](that: Stream[S]): Stream[S]
 def withFilter(f: T => Boolean): Stream[T]
 def nth(n: Int): T
}
case object NilStream extends Stream[Nothing] {
 def head() = throw new Error()
 def tail() = throw new Error()
 def map[S](f: Nothing => S): Stream[S] = NilStream
 def flatMap[S](f: Nothing => Stream[S]): Stream[S] = NilStream
 def ++[S >: Nothing](that: Stream[S]) = that
 def withFilter(f: Nothing => Boolean) = NilStream
 def nth(n: Int) = throw new Error()
}
case class ConsStream[+T](head: T, lazyTail: () => Stream[T]) extends Stream[T] {
 def tail = lazyTail()
 def map[S](f: T => S): Stream[S] =
 ConsStream(f(head), () => (tail map f))
 def flatMap[S](f: T => Stream[S]): Stream[S] =
 f(head) ++ tail.flatMap(f)
 def ++[S >: T](that: Stream[S]): Stream[S] =
 ConsStream(head, () => tail ++ that)
 ...
}
case class ConsStream[+T](head: T, lazyTail: () => Stream[T]) extends Stream[T] {
 ...
 def withFilter(f: T => Boolean) = {
 if (f(head)) ConsStream(head, () => tail.withFilter(f))
 else tail.withFilter(f)
 }
 def nth(n: Int) = {
 require (n >= 0)
 if (n == 0) head
 else tail.nth(n - 1)
 }
}
def range(low: Int, high: Int): Stream[Int] =
 if (low > high) NilStream
 else ConsStream(low, () => range(low + 1, high))
Streams

def intsFrom(n: Int): Stream[Int] =
 ConsStream(n, () => intsFrom(n + 1))
Streams

```scala
val nats = intsFrom(0)
```
def fibGen(a: Int, b: Int): Stream[Int] =
 ConsStream(a, () => fibGen(b, a + b))
Streams

val fibs = fibGen(0, 1)
def push(x: Int, ys: Stream[Int]) = {
 ConsStream(x, () => ys)
}
def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))
def sieve(stream: Stream[Int]): Stream[Int] = ConsStream(stream.head,
 () => sieve(stream.tail withFilter
 (x => !(isDivisible
 (x => !(isDivisible
 (x, stream.head)))))))
Sieve of Eratosthenes

The Sieve of Eratosthenes is an ancient algorithm for finding all numbers up to a specified integer that are not factors of any smaller number. It is named after Eratosthenes of Cyrene, a mathematician who lived in the 3rd century BC. The algorithm is as follows:

1. Create a list of consecutive integers from 2 through n.
2. Starting from 2, for every number in the list, if it has not been marked as non-prime, it is a prime number. Mark its multiples as non-prime.
3. Repeat step 2 for all remaining unmarked numbers in the list.
4. The numbers that remain unmarked are the prime numbers up to n.

The diagram above illustrates the Sieve of Eratosthenes for numbers up to 120.

CC BY-SA 3.0
https://commons.wikimedia.org/w/index.php?curid=2810935
A Stream of Primes

val primes = sieve(intsFrom(2))
A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7
def add(xs: Stream[Int],
 ys: Stream[Int]) : Stream[Int] = {

 (xs, ys) match {
 case (NilStream, _) => ys
 case (_, NilStream) => xs
 case (ConsStream(x,f), ConsStream(y,g)) =>
 ConsStream(x + y, () => add(f(), g()))
 }
}
def ones(): Stream[Int] = ConsStream(1, ones)
Alternative Definition of the Stream of Natural Numbers

def nats(): Stream[Int] =
 ConsStream(0, () => add(ones, nats))
Alternative Definition of the Fibonacci Stream

def fibs(): Stream[Int] =
 ConsStream(0,
 () => ConsStream(1,
 () => add(fibs.tail, fibs)))
Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] = stream map (_ * c)

def powersOfTwo(): Stream[Int] = ConsStream(1, () => scaleStream(2, powersOfTwo))
def primes() =
 ConsStream(2, () => intsFrom(3) withFilter isPrime)

def isPrime(n: Int): Boolean = {
 def sieve(next: Stream[Int]): Boolean = {
 if (square(next.head) > n) true
 else if (isDivisible(n, next.head)) false
 else sieve(next.tail)
 }
 sieve(primes)
}
Numeric Integration with Streams

\[S_i = c + \sum_{j=1}^{i} x_j dt \]
Numeric Integration with Streams

def integral(integrand: Stream[Double], init: Double, dt: Double) = {
 def inner(): Stream[Double] = {
 ConsStream(init, () => addStreams(scaleStream(dt, integrand), inner))
 }
 inner
}
def withdraw(balance: Int, amounts: Stream[Int]): Stream[Int] = {
 ConsStream(balace,
 () => withdraw(balance - amounts.head,
 amounts.tail))
}
Discussion

• Our modeling of a bank account is a purely functional program without state

• Nevertheless:
 • If a user provides the stream of withdrawals, and
 • The stream of balances is displayed as outputs,
 • The system will behave from a user’s perspective as a stateful system
Discussion

- The key to understanding this paradox is that the “state” is in the world:
 - The user/bank system is stateful and provides the input stream
 - If we could “step outside” our own perspective in time, we could view our withdrawal stream as another stateless stream of transactions
Changing the State of Variables
Changing the State of Variables

• Thus far, we have focused solely on purely functional programs

• This approach has gotten us remarkably far

• Sometimes, it is difficult to structure a program without some notion of stateful variables:
 • I/O, GUIs
 • Modeling a stateful system in the world
Assignment and Local State

• We view the world as consisting of objects with state that changes over time

• It is often natural to model physical systems with computational objects with state that changes over time
Assignment and Local State

• If we choose to model the flow of time in the system by elapsed time in the computation, we need a way to change the state of objects as a program runs.

• If we choose to model state using symbolic names in our program, we need an assignment operator to allow for changing the value associated with a name.
Modeling an Address Book

class AddressBook() {
 val addresses: Map[String, String] = Map()

 def put(name: String, address: String) = {
 ...
 }

 def lookup(name: String) = addresses(name)
}
class AddressBook() {
 var addresses: Map[String, String] = Map()

 def put(name: String, address: String) = {
 addresses = addresses + (name -> address)
 }

 def lookup(name: String) = addresses(name)
}

You now saw var; you are still not allowed to use it :)}
Sameness and Change

• In the context of assignment, our notion of equality becomes far more complex

```scala
val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook
```
Sameness and Change

- Effectively assignment forces us to view names as referring not to values, but to *places* that store values
Referential Transparency

- The notion that equals can be substituted for equals in an expression without changing the value of the expression is known as *referential transparency*.

- Referential transparency is one of the distinguishing aspects of functional programming.

- It is lost as soon as we introduce assignment.
Referential Transparency

• Without referential transparency, the notion of what it means for two objects to be “the same” is far more difficult to explain

• One approach:
 • Modify one object and see whether the other object has changed in the same way
Referential Transparency

• One approach:
 • Modify one object and see whether the other object has changed in the same way
 • But that involves observing a single object twice
 • How do we know we are observing the same object both times?
Pitfalls of Imperative Programming

• The order of updates to variables is a classic source of bugs
def factorial(n: Int) = {
 var product = 1
 var counter = 1
 def iter(): Int = {
 if (counter > n) {
 product
 } else {
 product = product * counter
 counter = counter + 1
 iter()
 }
 }
 iter()
}
```java
def factorial(n: Int) = {
  var product = 1
  var counter = 1
  def iter(): Int = {
    if (counter > n) {
      product
    } else {
      product = product * counter
      counter = counter + 1
      iter()
    }
  }
  iter()
}
```

What if the order of these updates were reversed?
Review: The Environment Model of Evaluation

• Environments map names to values

• Every expression is evaluated in the context of an environment
The Environment Model of Reduction

• To evaluate a name, simply reduce to the value it is mapped to in the environment
The Environment Model of Reduction

- To evaluate a function, reduce it to a closure, which consists of two parts:
 - The body of the function
 - The environment in which the body occurs
The Environment Model of Reduction

- Objects are also modeled as closures
 - What is the environment?
 - What corresponds to the body of the function?
The Environment Model of Reduction

• To evaluate an application of a closure
 • Extend the environment of the closure, mapping the function’s parameters to argument values
 • Evaluate the body of the closure in this new environment
Variable Rebinding in the Environment Model

• The environment model provides us with the necessary machinery to model stateful variables

• To evaluate a variable v assignment:

 • Rebind the value v maps to in the environment in which the assignment occurs
Rebinding a Variable in an Environment

- The rebound value of v is then used in all subsequent reductions involving the same environment.
 - Includes closures involving that environment.
- This model of variable assignment pushes the notion of state out to environments.
- The “places” referred to by variables are simply components of environments.
Example: Pseudo-Random Number Generation

• There are many approaches to generating a pseudo-random stream of Int values

• One common approach is to define a linear congruential generator (LCG):

\[X_{n+1} = (aX_n + c) \mod m \]

• The pseudo-random numbers are the elements of this recurrence
Linear Congruential Generators

• LCGs can produce generators capable of passing formal tests for randomness

• The quality of the results is highly dependent on the initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes
A Linear Congruent Generator (C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2

 def inner() = {
 seed = (a*seed + b) % m
 seed
 }
 inner
}
A Linear Congruent Generator
(C++11 minstd_rand)

```scala
val g = makeRandomGenerator()<E> ↦
val g =
<
  def inner() = {
    seed = (a*seed + b) % m
    seed
  },
val a = 48271
val b = 0
val m = Int.MaxValue
val seed = 2
```
\(g() \langle E \rangle \mapsto \)
\[
< \quad \text{def inner()} = \{
 \quad \text{seed} = (a*\text{seed} + b) \mod m \\
 \quad \text{seed}
\} , \\
\quad \text{val a} = 48271 \\
\quad \text{val b} = 0 \\
\quad \text{val m} = \text{Int.MaxValue} \\
\quad \text{var seed} = 2 >() \langle E \rangle \mapsto
\]
seed = (a*seed + b) % m
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >
⇒
seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >
⇒
seed, `<val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 96542>

⇒

96542
And now the environment closing over generator g binds $seed$ to 96542.