Comp 311
~unctional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments



Streams



Streams

e aform of “lazy” sequence
* Inspired by signal-processing (e.g. digital circuits)
 Components accept streams of signals as input,

transform their input, and produce streams of
signals as outputs



Streams

abstract class Stream[+T] {

def head(): T

ef tail(): Stream[T]

ef map[S](f: T => S): Stream[S]

ef flatMap[S](f: T => Stream[S]): Stream[S]
ef ++[S >: T](that: Stream[S]): Stream[S]
ef withFilter(f: T => Boolean): Stream|[T]
ef nth(n: Int): T

QA OO A A A QA



Streams

case object Ni1lStream extends Stream[Nothing] {

def head() = throw new Error()

def tail() = throw new Error()

def map[S](f: Nothing => S): Stream[S] = NilStream
def flatMap[S](f: Nothing => Stream[S]): Stream[S] =
N11lStream

def ++[S >: Nothing](that: Stream[S]) = that

def withFilter(f: Nothing => Boolean) = NilStream
def nth(n: Int) = throw new Error()




Streams

case class ConsStream[+T]Chead: T, lazyTail: () => Stream[T])
extends Stream[T] {
def tail = lazyTail()
def map[S](f: T => S): Stream[S] =
ConsStream(f(Chead), (O => (tail map f))
def flatMap[S](f: T => Stream[S]): Stream[S] =
f(head) ++ tail.flatMap(f)
def ++[S >: T](that: Stream[S]): Stream[S] =
ConsStream(Chead, () => tail ++ that)



Streams

case class ConsStream[+T](Chead: T, lazyTail: () => Stream[T])
extends Stream[T] {

def withFilter(f: T => Boolean) = {
1f (f(head)) ConsStream(Chead, () => tail.withFilter(f))
else tail.withFilter(f)

¥

def nth(n: Int) = {
require (n >= 0)
1f (n == 0) head
else tail.nth(n - 1)

¥

¥



Streams

def range(low: Int, high: Int): Stream[Int] =
1f (low > high) NilStream
else ConsStream(low, () => range(low + 1, high))



Streams

def intsFrom(n: Int): Stream[Int] =
ConsStream(n, () => intsFrom(n + 1))



Streams

val nats = 1ntsFrom(Q)



Streams

def fibGen(a: Int, b: Int): Stream[Int] =
ConsStream(a, () => fibGen(b, a + b))



Streams

val fibs = fibGen(0, 1)



Streams

def push(x: Int, ys: Stream[Int]) = {
ConsStream(x, () => ys)

¥



Streams

def i1sDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))



A Prime Sieve

def sieve(stream: Stream[Int]): Stream[Int] =
ConsStream(stream. head,
() => sieve(stream.tail withFilter
(x => !(1sDivisible
(x, stream.head)))))



Sieve of Eratosthenes

401 1P °r 1 11 1 Prime numbers

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

https://en.wikipedia.org/wiki/Sieve of Eratosthenes
CC BY-SA 3.0
httos://commons.wikimedia.ora/w/index.php?curid=2810935



https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

A Stream of Primes

val primes = sieve(intsFrom(2))



A Stream of Primes

> primes.head
resS: Int = 2
> primes.nth(l)
reso: Int = 3
> primes.nth(2)
res/: Int = 5
> primes.nth(3)
res8: Int = 7



Streams

def add(xs: Stream[Int],
ys: Stream[Int]) :Stream[Int] = {

(xs, ys) match {
case (N1lStream, _) => ys
case (_, Ni1lStream) => xs
case (ConsStream(x,f), ConsStream(y,g)) =>
ConsStream(x + y, (O => add(f(Q), g(0))



Streams

def ones(): Stream[Int] = ConsStream(1l, ones)



Alternative Definition of the
Stream of Natural Numbers

def nats(): Stream[Int] =
ConsStream(@®, () => add(ones, nats))



Alternative Definition of the
Fibonaccl Stream

def fibs(): Stream[Int] =
ConsStream(0,
() => ConsStream(1,
() => add(fibs.tail, fibs)))



Powers of Two

def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
stream map (_ * c)

def powersOfTwo(): Stream[Int] =
ConsStream(1l, () => scaleStream(2, powersOfTwo))



Alternative Definition of the
Stream of Primes

def primes() =
ConsStream(2, () => intsFrom(3) withFilter isPrime)

def i1sPrime(n: Int): Boolean = {
def sieve(next: Stream[Int]): Boolean = {
1t (square(next.head) > n) true
else 1f (1sDivisible(n, next.head)) false
else sieve(next.tail)

¥

sieve(primes)

¥



N .
umeric Integration with
Streams

Sz' :C+ijdt

7=1



Numeric Integration with
Streams

def integral(integrand: Stream[Double],
init: Double,
dt: Double) = {

def 1inner(): Stream[Double] = {
ConsStream(init,
() => addStreams(scaleStream(dt,
1ntegrand),
1nner))

inner



Streams and Local State

def withdraw(balance: Int, amounts: Stream[Int]):
Stream[Int] = {
ConsStream(balance,
() => withdraw(balance - amounts.head,
amounts.tail))



DISCUSSION

* Our modeling of a bank account is a purely
functional program without state

* Nevertheless:
* |f a user provides the stream of withdrawals, and
* [The stream of balances is displayed as outputs,

* [The system will behave from a user’s perspective
as a stateful system



DISCUSSION

* The key to understanding this paradox is that the
“state” Is in the world:

e The user/bank system is stateful and provides
the input stream

e |f we could “step outside” our own perspective In
time, we could view our withdrawal stream as
another stateless stream of transactions



Changing the State of
Variaples



Changing the State of
Variables

* Thus far, we have focused solely on purely
functional programs

* This approach has gotten us remarkably far

* Sometimes, it is difficult to structure a program
without some notion of stateful variables:

e |/O, GUIs

 Modeling a stateful system in the world



Assignment and Local State

* We view the world as consisting of objects with
state that changes over time

* |t is often natural to model physical systems with
computational objects with state that changes over
time



Assignment and Local State

* |f we choose to model the flow of time In the system
by elapsed time in the computation, we need a way
to change the state of objects as a program runs

* |f we choose to model state using symbolic names
IN our program, we need an assignment operator to
allow for changing the value associated with a
name



Modeling an Address Book

class AddressBook() {
val addresses: Map[String,String] = Map()

def put(name: String, address: String) = {

} ..

def lookup(name: String) = addresses(name)

¥



Modeling an Address Book

class AddressBook() {
var addresses: Map[String,String] = Map()

def put(name: String, address: String) = {
addresses = addresses + (nhame -> address)

¥

def lookup(name: String) = addresses(name)

¥

You now saw var; you are still not allowed to use it ;)



Sameness and Change

* |In the context of assignment, our notion of equality
becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook



Sameness and Change

» Effectively assignment forces us to view names as
referring not to values, but to places that store
values



Reterential Transparency

* [he notion that equals can be substituted for
equals in an expression without changing the value
of the expression is known as referential

transparency

* Referential transparency is one of the
distinguishing aspects of functional programming

* |tis lost as soon as we introduce assignment



Reterential Transparency

* Without reterential transparency, the notion of what
it means for two objects to be “the same” is far
more difficult to explain

* One approach:

 Modify one object and see whether the other
object has changed in the same way



Reterential Transparency

* One approach:

 Modify one object and see whether the other
object has changed in the same way

* But that involves observing a single object twice

* How do we know we are observing the same
object both times?



Pitfalls of Imperative
Programming

* The order of updates to variables is a classic
source of bugs



def factorial(n: Int) = {
var product = 1
var counter =1
def 1ter(): Int = {
1f (counter > n) {
product
¥
else {
product
counter
1ter()
}

¥
1ter()

product * counter
counter + 1

¥



def factorial(n: Int) = {
var product = 1
var counter =1
def 1ter(): Int = {
1f (counter > n) {

product
¥
else {
product_= product * counter
counter_=~counter + 1
1ter()
}
}
iter() What if the order of these updates

1 were reversed?



Review: [he Environment
Model of Evaluation

* Environments map names to values

* Every expression is evaluated in the context of an

environment



The Environment Model of
Reduction

* Jo evaluate a name, simply reduce to the value it is
mapped to in the environment



The Environment Model of
Reduction

 [o evaluate a function, reduce it to a closure, which
consists of two parts:

* [he body of the function

* The environment in which the body occurs



The Environment Model of
Reduction

* Objects are also modeled as closures
 What is the environment?

 What corresponds to the body of the function?



The Environment Model of
Reduction

e Jo evaluate an application of a closure

* Extend the environment of the closure, mapping
the function’s parameters to argument values

* Evaluate the body of the closure in this new
environment



Variable Rebinding In the
Environment Model

* The environment model provides us with the
necessary machinery to model stateful variables

* Jo evaluate a variable v assignment:

* Rebind the value v maps to in the environment in
which the assignment occurs



Rebinding a Variable in an
Environment

e The rebound value of vis then used in all
subseqguent reductions involving the same
environment

* |ncludes closures involving that environment

* This model of variable assignment pushes the
notion of state out to environments

* The "places” reterred to by variables are simply
components of environments



Example: Pseudo-Random
Number Generation

* [There are many approaches to generating a
pseudo-random stream of Int values

* One common approach is to define a linear
congruential generator (LCQG):

Xni1 = (aX, + ¢) mod m

* [he pseudo-random numbers are the elements of
this recurrence



|_inear Congruential
Generators

LCGs can produce generators capable of passing
formal tests for randomness

The quality of the results is highly dependent on the
iNnitial values selected

Poor statistical properties

Not well suited for cryptographic purposes



A Linear Congruent Generator
(C++11 minstd_rand)

def makeRandomGenerator(): () => Int = {
val a = 48271
val b = 0
val m = Int.MaxValue
var seed = Z

def 1nner() = {
seed = (a*seed + b) % m
seed

¥

inner


https://en.wikipedia.org/wiki/C++11

A Linear Congruent Generator
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ~
val g =
< def 1nner() = {

seed = (a*seed + b) % m

seed
o
val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 2 >


https://en.wikipedia.org/wiki/C%2B%2B11

gO<E> -
< def 1nner() = {

seed = (a*seed + b) % m

seed
o
val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 2 >(O)<E> »



seed = (a*seed + b) % m

seed,
< val a = 438271
val b = 0
val m = Int.MaxValue

var seed = 2 >

>

seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271

val b = 0

val m = Int.MaxValue

var seed = 2 >




seed, <val a = 48271
val b = 0
val m = Int.MaxValue
var seed = 965472>

96542



seed, <val a = 48271
val b = 0
val m = Int.MaxValue

var seed = 96542>

96542

And now the environment closing over
generator g binds seed to 96542.



