
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments

Streams

Streams

• a form of “lazy” sequence

• inspired by signal-processing (e.g. digital circuits)

• Components accept streams of signals as input,
transform their input, and produce streams of
signals as outputs

Streams

abstract class Stream[+T] {
 def head(): T
 def tail(): Stream[T]
 def map[S](f: T => S): Stream[S]
 def flatMap[S](f: T => Stream[S]): Stream[S]
 def ++[S >: T](that: Stream[S]): Stream[S]
 def withFilter(f: T => Boolean): Stream[T]
 def nth(n: Int): T
}

Streams
case object NilStream extends Stream[Nothing] {
 def head() = throw new Error()
 def tail() = throw new Error()
 def map[S](f: Nothing => S): Stream[S] = NilStream
 def flatMap[S](f: Nothing => Stream[S]): Stream[S] =
 NilStream
 def ++[S >: Nothing](that: Stream[S]) = that
 def withFilter(f: Nothing => Boolean) = NilStream
 def nth(n: Int) = throw new Error()
}

Streams

case class ConsStream[+T](head: T, lazyTail: () => Stream[T])
extends Stream[T] {
 def tail = lazyTail()
 def map[S](f: T => S): Stream[S] =
 ConsStream(f(head), () => (tail map f))
 def flatMap[S](f: T => Stream[S]): Stream[S] =
 f(head) ++ tail.flatMap(f)
 def ++[S >: T](that: Stream[S]): Stream[S] =
 ConsStream(head, () => tail ++ that)
 …
}

Streams
case class ConsStream[+T](head: T, lazyTail: () => Stream[T])
extends Stream[T] {
 …
 def withFilter(f: T => Boolean) = {
 if (f(head)) ConsStream(head, () => tail.withFilter(f))
 else tail.withFilter(f)
 }
 def nth(n: Int) = {
 require (n >= 0)
 if (n == 0) head
 else tail.nth(n - 1)
 }
}

Streams

 def range(low: Int, high: Int): Stream[Int] =
 if (low > high) NilStream
 else ConsStream(low, () => range(low + 1, high))

Streams

def intsFrom(n: Int): Stream[Int] =
 ConsStream(n, () => intsFrom(n + 1))

Streams

val nats = intsFrom(0)

Streams

def fibGen(a: Int, b: Int): Stream[Int] =
 ConsStream(a, () => fibGen(b, a + b))

Streams

val fibs = fibGen(0, 1)

Streams

 def push(x: Int, ys: Stream[Int]) = {
 ConsStream(x, () => ys)
 }

Streams

def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))

A Prime Sieve

 def sieve(stream: Stream[Int]): Stream[Int] =
 ConsStream(stream.head,
 () => sieve(stream.tail withFilter
 (x => !(isDivisible
 (x, stream.head)))))

Sieve of Eratosthenes

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=2810935

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

A Stream of Primes

val primes = sieve(intsFrom(2))

A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7

Streams
 def add(xs: Stream[Int],
 ys: Stream[Int]) :Stream[Int] = {

 (xs, ys) match {
 case (NilStream, _) => ys
 case (_, NilStream) => xs
 case (ConsStream(x,f), ConsStream(y,g)) =>
 ConsStream(x + y, () => add(f(), g()))
 }
 }

Streams

 def ones(): Stream[Int] = ConsStream(1, ones)

Alternative Definition of the
Stream of Natural Numbers

 def nats(): Stream[Int] =
 ConsStream(0, () => add(ones, nats))

Alternative Definition of the
Fibonacci Stream

def fibs(): Stream[Int] =
 ConsStream(0,
 () => ConsStream(1,
 () => add(fibs.tail, fibs)))

Powers of Two

 def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] =
 stream map (_ * c)

 def powersOfTwo(): Stream[Int] =
 ConsStream(1, () => scaleStream(2, powersOfTwo))

Alternative Definition of the
Stream of Primes

 def primes() =
 ConsStream(2, () => intsFrom(3) withFilter isPrime)

 def isPrime(n: Int): Boolean = {
 def sieve(next: Stream[Int]): Boolean = {
 if (square(next.head) > n) true
 else if (isDivisible(n, next.head)) false
 else sieve(next.tail)
 }
 sieve(primes)
 }

Numeric Integration with
Streams

Si = c+
iX

j=1

xjdt

Numeric Integration with
Streams

 def integral(integrand: Stream[Double],
 init: Double,
 dt: Double) = {

 def inner(): Stream[Double] = {
 ConsStream(init,
 () => addStreams(scaleStream(dt,
 integrand),
 inner))
 }
 inner
 }

Streams and Local State

 def withdraw(balance: Int, amounts: Stream[Int]):
 Stream[Int] = {
 ConsStream(balance,
 () => withdraw(balance - amounts.head,
 amounts.tail))
 }

Discussion
• Our modeling of a bank account is a purely

functional program without state

• Nevertheless:

• If a user provides the stream of withdrawals, and

• The stream of balances is displayed as outputs,

• The system will behave from a user’s perspective
as a stateful system

Discussion
• The key to understanding this paradox is that the

“state” is in the world:

• The user/bank system is stateful and provides
the input stream

• If we could “step outside” our own perspective in
time, we could view our withdrawal stream as
another stateless stream of transactions

Changing the State of
Variables

Changing the State of
Variables

• Thus far, we have focused solely on purely
functional programs

• This approach has gotten us remarkably far

• Sometimes, it is difficult to structure a program
without some notion of stateful variables:

• I/O, GUIs

• Modeling a stateful system in the world

Assignment and Local State

• We view the world as consisting of objects with
state that changes over time

• It is often natural to model physical systems with
computational objects with state that changes over
time

Assignment and Local State

• If we choose to model the flow of time in the system
by elapsed time in the computation, we need a way
to change the state of objects as a program runs

• If we choose to model state using symbolic names
in our program, we need an assignment operator to
allow for changing the value associated with a
name

Modeling an Address Book

class AddressBook() {
 val addresses: Map[String,String] = Map()

 def put(name: String, address: String) = {
 …
 }

 def lookup(name: String) = addresses(name)
}

Modeling an Address Book

class AddressBook() {
 var addresses: Map[String,String] = Map()

 def put(name: String, address: String) = {
 addresses = addresses + (name -> address)
 }

 def lookup(name: String) = addresses(name)
}

You now saw var; you are still not allowed to use it :)

Sameness and Change
• In the context of assignment, our notion of equality

becomes far more complex

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook

Sameness and Change

• Effectively assignment forces us to view names as
referring not to values, but to places that store
values

Referential Transparency

• The notion that equals can be substituted for
equals in an expression without changing the value
of the expression is known as referential
transparency

• Referential transparency is one of the
distinguishing aspects of functional programming

• It is lost as soon as we introduce assignment

Referential Transparency

• Without referential transparency, the notion of what
it means for two objects to be “the same” is far
more difficult to explain

• One approach:

• Modify one object and see whether the other
object has changed in the same way

Referential Transparency

• One approach:

• Modify one object and see whether the other
object has changed in the same way

• But that involves observing a single object twice

• How do we know we are observing the same
object both times?

Pitfalls of Imperative
Programming

• The order of updates to variables is a classic
source of bugs

 def factorial(n: Int) = {
 var product = 1
 var counter = 1
 def iter(): Int = {
 if (counter > n) {
 product
 }
 else {
 product = product * counter
 counter = counter + 1
 iter()
 }
 }
 iter()
 }

 def factorial(n: Int) = {
 var product = 1
 var counter = 1
 def iter(): Int = {
 if (counter > n) {
 product
 }
 else {
 product = product * counter
 counter = counter + 1
 iter()
 }
 }
 iter()
 }

What if the order of these updates
were reversed?

Review: The Environment
Model of Evaluation

• Environments map names to values

• Every expression is evaluated in the context of an
environment

The Environment Model of
Reduction

• To evaluate a name, simply reduce to the value it is
mapped to in the environment

The Environment Model of
Reduction

• To evaluate a function, reduce it to a closure, which
consists of two parts:

• The body of the function

• The environment in which the body occurs

The Environment Model of
Reduction

• Objects are also modeled as closures

• What is the environment?

• What corresponds to the body of the function?

The Environment Model of
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping
the function’s parameters to argument values

• Evaluate the body of the closure in this new
environment

Variable Rebinding in the
Environment Model

• The environment model provides us with the
necessary machinery to model stateful variables

• To evaluate a variable v assignment:

• Rebind the value v maps to in the environment in
which the assignment occurs

Rebinding a Variable in an
Environment

• The rebound value of v is then used in all
subsequent reductions involving the same
environment

• Includes closures involving that environment

• This model of variable assignment pushes the
notion of state out to environments

• The “places” referred to by variables are simply
components of environments

Example: Pseudo-Random
Number Generation

• There are many approaches to generating a
pseudo-random stream of Int values

• One common approach is to define a linear
congruential generator (LCG):

• The pseudo-random numbers are the elements of
this recurrence

Xn+1 = (aXn + c) mod m

Linear Congruential
Generators

• LCGs can produce generators capable of passing
formal tests for randomness

• The quality of the results is highly dependent on the
initial values selected

• Poor statistical properties

• Not well suited for cryptographic purposes

A Linear Congruent Generator
(C++11 minstd_rand)

 def makeRandomGenerator(): () => Int = {
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2

 def inner() = {
 seed = (a*seed + b) % m
 seed
 }
 inner
 }

https://en.wikipedia.org/wiki/C++11

A Linear Congruent Generator
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g =
< def inner() = {
 seed = (a*seed + b) % m
 seed
 } ,
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >

https://en.wikipedia.org/wiki/C%2B%2B11

g()<E> ↦
< def inner() = {
 seed = (a*seed + b) % m
 seed
 } ,
 val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >()<E> ↦

seed = (a*seed + b) % m
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >
↦
seed = (48271*2 + 0) % Int.MaxValue
seed,
< val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 2 >
↦

seed, <val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 96542>
↦
96542

seed, <val a = 48271
 val b = 0
 val m = Int.MaxValue
 var seed = 96542>
↦
96542

And now the environment closing over
generator g binds seed to 96542.

