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Streams



Streams

• a form of “lazy” sequence 

• inspired by signal-processing (e.g. digital circuits) 

• Components accept streams of signals as input, 
transform their input, and produce streams of 
signals as outputs



Streams

abstract class Stream[+T] {
  def head(): T
  def tail(): Stream[T]
  def map[S](f: T => S): Stream[S]
  def flatMap[S](f: T => Stream[S]): Stream[S] 
  def ++[S >: T](that: Stream[S]): Stream[S]
  def withFilter(f: T => Boolean): Stream[T]
  def nth(n: Int): T
}



Streams
case object NilStream extends Stream[Nothing] {
  def head() = throw new Error()
  def tail() = throw new Error()
  def map[S](f: Nothing => S): Stream[S] = NilStream
  def flatMap[S](f: Nothing => Stream[S]): Stream[S] = 
    NilStream
  def ++[S >: Nothing](that: Stream[S]) = that
  def withFilter(f: Nothing => Boolean) = NilStream
  def nth(n: Int) = throw new Error()
}



Streams

case class ConsStream[+T](head: T, lazyTail: () => Stream[T])                          
extends Stream[T] { 
  def tail = lazyTail()
  def map[S](f: T => S): Stream[S] = 
    ConsStream(f(head), () => (tail map f))
  def flatMap[S](f: T => Stream[S]): Stream[S] = 
    f(head) ++ tail.flatMap(f)
  def ++[S >: T](that: Stream[S]): Stream[S] = 
    ConsStream(head, () => tail ++ that)
  …
}



Streams
case class ConsStream[+T](head: T, lazyTail: () => Stream[T]) 
extends Stream[T] {
  …
  def withFilter(f: T => Boolean) = {
    if (f(head)) ConsStream(head, () => tail.withFilter(f))
    else tail.withFilter(f)
  }
  def nth(n: Int) = {
    require (n >= 0)
    if (n == 0) head
    else tail.nth(n - 1)
  }
}



Streams

  def range(low: Int, high: Int): Stream[Int] = 
    if (low > high) NilStream
    else ConsStream(low, () => range(low + 1, high))



Streams

def intsFrom(n: Int): Stream[Int] = 
  ConsStream(n, () => intsFrom(n + 1))



Streams

val nats = intsFrom(0)



Streams

def fibGen(a: Int, b: Int): Stream[Int] = 
  ConsStream(a, () => fibGen(b, a + b))



Streams

val fibs = fibGen(0, 1)



Streams

  def push(x: Int, ys: Stream[Int]) = {
    ConsStream(x, () => ys)
  }



Streams

def isDivisible(m: Int, n: Int) = (m % n == 0)

val noSevens = nats withFilter (isDivisible(_, 7))



A Prime Sieve

  def sieve(stream: Stream[Int]): Stream[Int] = 
    ConsStream(stream.head, 
               () => sieve(stream.tail withFilter 
                             (x => !(isDivisible
                                       (x, stream.head)))))



Sieve of Eratosthenes

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 
CC BY-SA 3.0 

https://commons.wikimedia.org/w/index.php?curid=2810935

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


A Stream of Primes

val primes = sieve(intsFrom(2))



A Stream of Primes

> primes.head
res5: Int = 2
> primes.nth(1)
res6: Int = 3
> primes.nth(2)
res7: Int = 5
> primes.nth(3)
res8: Int = 7



Streams
  def add(xs: Stream[Int], 
          ys: Stream[Int]) :Stream[Int] = {

    (xs, ys) match {
      case (NilStream, _) => ys
      case (_, NilStream) => xs
      case (ConsStream(x,f), ConsStream(y,g)) => 
        ConsStream(x + y, () => add(f(), g()))
    }
  }



Streams

  def ones(): Stream[Int] = ConsStream(1, ones)



Alternative Definition of the 
Stream of Natural Numbers

 def nats(): Stream[Int] = 
   ConsStream(0, () => add(ones, nats))



Alternative Definition of the 
Fibonacci Stream

def fibs(): Stream[Int] = 
  ConsStream(0, 
            () => ConsStream(1,
                             () => add(fibs.tail, fibs)))



Powers of Two

  def scaleStream(c: Int, stream: Stream[Int]): Stream[Int] = 
    stream map (_ * c)
  
  def powersOfTwo(): Stream[Int] = 
    ConsStream(1, () => scaleStream(2, powersOfTwo))



Alternative Definition of the 
Stream of Primes

  def primes() = 
    ConsStream(2, () => intsFrom(3) withFilter isPrime)
  
  def isPrime(n: Int): Boolean = {
    def sieve(next: Stream[Int]): Boolean = {
      if (square(next.head) > n) true
      else if (isDivisible(n, next.head)) false
      else sieve(next.tail)
    }
    sieve(primes)
  }



Numeric Integration with 
Streams

Si = c+
iX

j=1

xjdt



Numeric Integration with 
Streams

  def integral(integrand: Stream[Double],
               init: Double,
               dt: Double) = {

    def inner(): Stream[Double] = {
      ConsStream(init, 
                 () => addStreams(scaleStream(dt,  
                                              integrand), 
                                  inner))
    }
    inner
  }



Streams and Local State

  def withdraw(balance: Int, amounts: Stream[Int]): 
  Stream[Int] = {
    ConsStream(balance, 
               () => withdraw(balance - amounts.head, 
                              amounts.tail))
  }



Discussion
• Our modeling of a bank account is a purely 

functional program without state 

• Nevertheless: 

• If a user provides the stream of withdrawals, and 

• The stream of balances is displayed as outputs, 

• The system will behave from a user’s perspective 
as a stateful system



Discussion
• The key to understanding this paradox is that the 

“state” is in the world:  

• The user/bank system is stateful and provides 
the input stream 

• If we could “step outside” our own perspective in 
time, we could view our withdrawal stream as 
another stateless stream of transactions



Changing the State of 
Variables



Changing the State of 
Variables

• Thus far, we have focused solely on purely 
functional programs 

• This approach has gotten us remarkably far 

• Sometimes, it is difficult to structure a program 
without some notion of stateful variables: 

• I/O, GUIs 

• Modeling a stateful system in the world



Assignment and Local State

• We view the world as consisting of objects with 
state that changes over time 

• It is often natural to model physical systems with 
computational objects with state that changes over 
time



Assignment and Local State

• If we choose to model the flow of time in the system 
by elapsed time in the computation, we need a way 
to change the state of objects as a program runs 

• If we choose to model state using symbolic names 
in our program, we need an assignment operator to 
allow for changing the value associated with a 
name



Modeling an Address Book

class AddressBook() {
  val addresses: Map[String,String] = Map()
  
  def put(name: String, address: String) = {
    …
  }
  
  def lookup(name: String) = addresses(name)
}



Modeling an Address Book

class AddressBook() {
  var addresses: Map[String,String] = Map()
  
  def put(name: String, address: String) = {
    addresses = addresses + (name -> address)
  }
  
  def lookup(name: String) = addresses(name)
}

You now saw var; you are still not allowed to use it :)



Sameness and Change
• In the context of assignment, our notion of equality 

becomes far more complex 

val petersAddressBook = new AddressBook()
val paulsAddressBook = new AddressBook()

val petersAddressBook = new AddressBook()
val paulsAddressBook = paulsAddressBook



Sameness and Change

• Effectively assignment forces us to view names as 
referring not to values, but to places that store 
values



Referential Transparency

• The notion that equals can be substituted for 
equals in an expression without changing the value 
of the expression is known as referential 
transparency 

• Referential transparency is one of the 
distinguishing aspects of functional programming 

• It is lost as soon as we introduce assignment



Referential Transparency

• Without referential transparency, the notion of what 
it means for two objects to be “the same” is far 
more difficult to explain 

• One approach: 

• Modify one object and see whether the other 
object has changed in the same way



Referential Transparency

• One approach: 

• Modify one object and see whether the other 
object has changed in the same way 

• But that involves observing a single object twice 

• How do we know we are observing the same 
object both times?



Pitfalls of Imperative 
Programming

• The order of updates to variables is a classic 
source of bugs



  def factorial(n: Int) = {
    var product = 1
    var counter = 1
    def iter(): Int = {
      if (counter > n) {
        product
      }
      else {
        product = product * counter
        counter = counter + 1
        iter()
      }
    }
    iter()
  }



  def factorial(n: Int) = {
    var product = 1
    var counter = 1
    def iter(): Int = {
      if (counter > n) {
        product
      }
      else {
        product = product * counter
        counter = counter + 1
        iter()
      }
    }
    iter()
  }

What if the order of these updates 
were reversed?



Review: The Environment 
Model of Evaluation

• Environments map names to values 

• Every expression is evaluated in the context of an 
environment



The Environment Model of 
Reduction

• To evaluate a name, simply reduce to the value it is 
mapped to in the environment



The Environment Model of 
Reduction

• To evaluate a function, reduce it to a closure, which 
consists of two parts: 

• The body of the function 

• The environment in which the body occurs



The Environment Model of 
Reduction

• Objects are also modeled as closures 

• What is the environment?  

• What corresponds to the body of the function?



The Environment Model of 
Reduction

• To evaluate an application of a closure 

• Extend the environment of the closure, mapping 
the function’s parameters to argument values 

• Evaluate the body of the closure in this new 
environment



Variable Rebinding in the 
Environment Model

• The environment model provides us with the 
necessary machinery to model stateful variables 

• To evaluate a variable v assignment: 

• Rebind the value v maps to in the environment in 
which the assignment occurs



Rebinding a Variable in an 
Environment

• The rebound value of v is then used in all 
subsequent reductions involving the same 
environment 

• Includes closures involving that environment 

• This model of variable assignment pushes the 
notion of state out to environments 

• The “places” referred to by variables are simply 
components of environments



Example: Pseudo-Random 
Number Generation

• There are many approaches to generating a 
pseudo-random stream of Int values 

• One common approach is to define a linear 
congruential generator (LCG): 

• The pseudo-random numbers are the elements of 
this recurrence

Xn+1 = (aXn + c) mod m



Linear Congruential 
Generators

• LCGs can produce generators capable of passing 
formal tests for randomness 

• The quality of the results is highly dependent on the 
initial values selected 

• Poor statistical properties 

• Not well suited for cryptographic purposes



A Linear Congruent Generator 
(C++11 minstd_rand)

  def makeRandomGenerator(): () => Int = {
    val a = 48271
    val b = 0
    val m = Int.MaxValue
    var seed = 2
    
    def inner() = {
      seed = (a*seed + b) % m
      seed
    }
    inner
  }

https://en.wikipedia.org/wiki/C++11


A Linear Congruent Generator 
(C++11 minstd_rand)

val g = makeRandomGenerator()<E> ↦
val g = 
< def inner() = {
      seed = (a*seed + b) % m
      seed
  } ,
  val a = 48271
  val b = 0
  val m = Int.MaxValue
  var seed = 2 >

https://en.wikipedia.org/wiki/C%2B%2B11


g()<E> ↦
< def inner() = {
      seed = (a*seed + b) % m
      seed
  } ,
  val a = 48271
  val b = 0
  val m = Int.MaxValue
  var seed = 2 >()<E> ↦



seed = (a*seed + b) % m
seed, 
< val a = 48271
  val b = 0
  val m = Int.MaxValue
  var seed = 2 > 
↦
seed = (48271*2 + 0) % Int.MaxValue
seed, 
< val a = 48271
  val b = 0
  val m = Int.MaxValue
  var seed = 2 > 
↦



seed, <val a = 48271
       val b = 0
       val m = Int.MaxValue
       var seed = 96542> 
↦
96542



seed, <val a = 48271
       val b = 0
       val m = Int.MaxValue
       var seed = 96542> 
↦
96542

And now the environment closing over 
generator g binds seed to 96542.


